991 resultados para FUNCTIONAL MOBILITY
Resumo:
The emergence of smartphones with Wireless LAN (WiFi) network interfaces brought new challenges to application developers. The expected increase of users connectivity will impact their expectations for example on the performance of background applications. Unfortunately, the number and breadth of the studies on the new patterns of user mobility and connectivity that result from the emergence of smartphones is still insufficient to support this claim. This paper contributes with preliminary results on a large scale study of the usage pattern of about 49000 devices and 31000 users who accessed at least one access point of the eduroam WiFi network on the campuses of the Lisbon Polytechnic Institute. Results confirm that the increasing number of smartphones resulted in significant changes to the pattern of use, with impact on the amount of traffic and users connection time.
Resumo:
Aims of study: 1) Describe the importance of human visual system on lesion detection in medical imaging perception research; 2) Discuss the relevance of research in medical imaging addressing visual function analysis; 3) Identify visual function tests which could be conducted on observers prior to participation in medical imaging perception research.
Resumo:
Thesis submitted to the Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia for the degree of Doctor of Philosophy in Environmental Engineering
Resumo:
This study was developed with the purpose to investigate the effect of polysaccharide/plasticiser concentration on the microstructure and molecular dynamics of polymeric film systems, using transmission electron microscope imaging (TEM) and nuclear magnetic resonance (NMR) techniques. Experiments were carried out in chitosan/glycerol films prepared with solutions of different composition. The films obtained after drying and equilibration were characterised in terms of composition, thickness and water activity. Results show that glycerol quantities used in film forming solutions were responsible for films composition; while polymer/total plasticiser ratio in the solution determined the thickness (and thus structure) of the films. These results were confirmed by TEM. NMR allowed understanding the films molecular rearrangement. Two different behaviours for the two components analysed, water and glycerol were observed: the first is predominantly moving free in the matrix, while glycerol is mainly bounded to the chitosan chain. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The activity and selectivity of bi-functional carbon-supported platinum catalysts for the hydroisomerization of n-alkanes have been studied. The influence of the properties of the carbon support on the performance of the catalysts were investigated by incorporating the metallic function on a series of carbons with varied porosity (microporous: GL-50 from Norit, and mesoporous: CMK-3) and surface chemistry (modified by wet oxidation). The characterization results achieved with H-2 chemisorption and TEM showed differences in surface metal concentrations and metal-support interactions depending on the support composition. The highest metal dispersion was achieved after oxidation of the carbon matrix in concentrated nitric acid, suggesting that the presence of surface functional sites distributed in inner and outer surface favors a homogeneous metal distribution. On the other hand, the higher hydrogenating activity of the catalysts prepared with the mesoporous carbon pointed out that a fast molecular traffic inside the pores plays an important role in the catalysts performance. For n-decane hydroisomerization of long chain n-alkanes, higher activities were obtained for the catalysts with an optimized acidity and metal dispersion along with adequate porosity, pointing out the importance of the support properties in the performance of the catalysts.
Resumo:
We investigate the behavior of a patchy particle model close to a hard-wall via Monte Carlo simulation and density functional theory (DFT). Two DFT approaches, based on the homogeneous and inhomogeneous versions of Wertheim's first order perturbation theory for the association free energy are used. We evaluate, by simulation and theory, the equilibrium bulk phase diagram of the fluid and analyze the surface properties for two isochores, one of which is close to the liquid side of the gas-liquid coexistence curve. We find that the density profile near the wall crosses over from a typical high-temperature adsorption profile to a low-temperature desorption one, for the isochore close to coexistence. We relate this behavior to the properties of the bulk network liquid and find that the theoretical descriptions are reasonably accurate in this regime. At very low temperatures, however, an almost fully bonded network is formed, and the simulations reveal a second adsorption regime which is not captured by DFT. We trace this failure to the neglect of orientational correlations of the particles, which are found to exhibit surface induced orientational order in this regime.
Resumo:
Dissertation presented to obtain a Ph.D. Degree in Chemical Physics
Resumo:
Journal of Bacteriology (Apr 2006) 3024-3036
Resumo:
With the emergence of low-power wireless hardware new ways of communication were needed. In order to standardize the communication between these low powered devices the Internet Engineering Task Force (IETF) released the 6LoWPAN stand- ard that acts as an additional layer for making the IPv6 link layer suitable for the lower-power and lossy networks. In the same way, IPv6 Routing Protocol for Low- Power and Lossy Networks (RPL) has been proposed by the IETF Routing Over Low power and Lossy networks (ROLL) Working Group as a standard routing protocol for IPv6 routing in low-power wireless sensor networks. The research performed in this thesis uses these technologies to implement a mobility process. Mobility management is a fundamental yet challenging area in low-power wireless networks. There are applications that require mobile nodes to exchange data with a xed infrastructure with quality-of-service guarantees. A prime example of these applications is the monitoring of patients in real-time. In these scenarios, broadcast- ing data to all access points (APs) within range may not be a valid option due to the energy consumption, data storage and complexity requirements. An alternative and e cient option is to allow mobile nodes to perform hand-o s. Hand-o mechanisms have been well studied in cellular and ad-hoc networks. However, low-power wireless networks pose a new set of challenges. On one hand, simpler radios and constrained resources ask for simpler hand-o schemes. On the other hand, the shorter coverage and higher variability of low-power links require a careful tuning of the hand-o parameters. In this work, we tackle the problem of integrating smart-HOP within a standard protocol, speci cally RPL. The simulation results in Cooja indicate that the pro- posed scheme minimizes the hand-o delay and the total network overhead. The standard RPL protocol is simply unable to provide a reliable mobility support sim- ilar to other COTS technologies. Instead, they support joining and leaving of nodes, with very low responsiveness in the existence of physical mobility.
Resumo:
OBJECTIVE: To evaluate the predictive value of genetic polymorphisms in the context of BCG immunotherapy outcome and create a predictive profile that may allow discriminating the risk of recurrence. MATERIAL AND METHODS: In a dataset of 204 patients treated with BCG, we evaluate 42 genetic polymorphisms in 38 genes involved in the BCG mechanism of action, using Sequenom MassARRAY technology. Stepwise multivariate Cox Regression was used for data mining. RESULTS: In agreement with previous studies we observed that gender, age, tumor multiplicity and treatment scheme were associated with BCG failure. Using stepwise multivariate Cox Regression analysis we propose the first predictive profile of BCG immunotherapy outcome and a risk score based on polymorphisms in immune system molecules (SNPs in TNFA-1031T/C (rs1799964), IL2RA rs2104286 T/C, IL17A-197G/A (rs2275913), IL17RA-809A/G (rs4819554), IL18R1 rs3771171 T/C, ICAM1 K469E (rs5498), FASL-844T/C (rs763110) and TRAILR1-397T/G (rs79037040) in association with clinicopathological variables. This risk score allows the categorization of patients into risk groups: patients within the Low Risk group have a 90% chance of successful treatment, whereas patients in the High Risk group present 75% chance of recurrence after BCG treatment. CONCLUSION: We have established the first predictive score of BCG immunotherapy outcome combining clinicopathological characteristics and a panel of genetic polymorphisms. Further studies using an independent cohort are warranted. Moreover, the inclusion of other biomarkers may help to improve the proposed model.
Resumo:
Dissertation submitted in Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa for the degree of Master in Biomedical Engineering
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertation presented to obtain a PhD degree in Biochemistry at Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Biológica – especialidade Engenharia Genética, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
The S100 proteins are 10-12 kDa EF-hand proteins that act as central regulators in a multitude of cellular processes including cell survival, proliferation, differentiation and motility. Consequently, many S100 proteins are implicated and display marked changes in their expression levels in many types of cancer, neurodegenerative disorders, inflammatory and autoimmune diseases. The structure and function of S100 proteins are modulated by metal ions via Ca2+ binding through EF-hand motifs and binding of Zn2+ and Cu2+ at additional sites, usually at the homodimer interfaces. Ca2+ binding modulates S100 conformational opening and thus promotes and affects the interaction with p53, the receptor for advanced glycation endproducts and Toll-like receptor 4, among many others. Structural plasticity also occurs at the quaternary level, where several S100 proteins self-assemble into multiple oligomeric states, many being functionally relevant. Recently, we have found that the S100A8/A9 proteins are involved in amyloidogenic processes in corpora amylacea of prostate cancer patients, and undergo metal-mediated amyloid oligomerization and fibrillation in vitro. Here we review the unique chemical and structural properties of S100 proteins that underlie the conformational changes resulting in their oligomerization upon metal ion binding and ultimately in functional control. The possibility that S100 proteins have intrinsic amyloid-forming capacity is also addressed, as well as the hypothesis that amyloid self-assemblies may, under particular physiological conditions, affect the S100 functions within the cellular milieu.