994 resultados para F359I POINT MUTATION
Resumo:
Febrile seizures affect approximately 3% of all children under six years of age and are by far the most common seizure disorder(1). A small proportion of children with febrile seizures later develop ongoing epilepsy with afebrile seizures(2). Segregation analysis suggests the majority of cases have complex inheritance(3) but rare families show apparent autosomal dominant: inheritance. Two putative loci have been mapped (FEB1 and FEB2), but specific genes have not yet been identified(4,5). We recently described a clinical subset, termed generalized epilepsy with febrile seizures plus (GEFS(+)), in which many family members have seizures with fever that may persist beyond six years of age or be associated with afebrile generalized seizures(6). We now report linkage, in another large GEFS(+) family, to chromosome region 19q13.1 and identification of a mutation in the voltage-gated sodium (Na+)-channel beta 1 subunit gene (SCN1B). The mutation changes a conserved cysteine residue disrupting a putative disulfide bridge which normally maintains an extracellular immunoglobulin-like fold. Go-expression of the mutant pr subunit with a brain Na+-channel alpha subunit in Xenopus laevis oocytes demonstrates that the mutation interferes with the ability of the subunit to modulate channel-gating kinetics consistent with a loss-of-function allele. This observation develops the theme that idiopathic epilepsies are a family of channelopathies and raises the possibility of involvement of other Na+-channel subunit genes in febrile seizures and generalized epilepsies with complex inheritance patterns.
Resumo:
We have identified a novel mutation within the linker L12 region of keratin 5 (K5) in a family with the Kobner variant of epidermolysis bullosa simplex. The pattern of inheritance of the disorder in this family is consistent with an autosomal dominant mode of transmission. Affected individuals develop extensive and generalized blistering at birth or early infancy but in later years clinical manifestations are largely confined to palmo-plantar surfaces. Direct sequencing of polymerase chain reaction products revealed a T to C transition within codon 323 of K5 in affected individuals, resulting in a valine to alanine substitution of the seventh residue within the L12 linker domain. This mutation was not observed in unaffected family members or in 100 K5 alleles of unrelated individuals with normal skin. The other critical regions of K5 and K14 were unremarkable in this family except for common polymorphisms that have been previously described. The valine at position 7 of the L12 domain is absolutely conserved in all type II keratins, and in other intermediate filament subunits as well, which suggests that this residue makes an important contribution to filament integrity. Secondary structure analysis revealed that alanine at this position markedly reduces both the hydrophobicity and the beta-sheet nature of the L12 domain. This is the first report of a mutation at this position in an intermediate filament subunit and reinforces the importance of this region to filament biology.
Resumo:
We modified the noninvasive, in vivo technique for strain application in the tibiae of rats (Turner et al,, Bone 12:73-79, 1991), The original model applies four-point bending to right tibiae via an open-loop, stepper-motor-driven spring linkage, Depending on the magnitude of applied load, the model produces new bone formation at periosteal (Ps) or endocortical surfaces (Ec.S). Due to the spring linkage, however, the range of frequencies at which loads can be applied is limited. The modified system replaces this design with an electromagnetic vibrator. A load transducer in series with the loading points allows calibration, the loaders' position to be adjusted, and cyclic loading completed under load central as a closed servo-loop. Two experiments were conducted to validate the modified system: (1) a strain gauge was applied to the lateral surface of the right tibia of 5 adult female rats and strains measured at applied loads from 10 to 60 N; and (2) the bone formation response was determined in 28 adult female Sprague-Dawley rats. Loading was applied as a haversine wave with a frequency of 2 Hz for 18 sec, every second day for 10 days. Peak bending loads mere applied at 33, 40, 52, and 64 N, and a sham-loading group tr as included at 64 N, Strains in the tibiae were linear between 10 and 60 N, and the average peak strain at the Ps.S at 60 N was 2664 +/- 250 microstrain, consistent with the results of Turner's group. Lamellar bone formation was stimulated at the Ec.S by applied bending, but not by sham loading. Bending strains above a loading threshold of 40 N increased Ec Lamellar hone formation rate, bone forming surface, and mineral apposition rate with a dose response similar to that reported by Turner et al, (J Bone Miner Res 9:87-97, 1994). We conclude that the modified loading system offers precision for applied loads of between 0 and 70 N, versatility in the selection of loading rates up to 20 Hz, and a reproducible bone formation response in the rat tibia, Adjustment of the loader also enables study of mechanical usage in murine tibia, an advantage with respect to the increasing variety of transgenic strains available in bone and mineral research. (Bone 23:307-310; 1998) (C) 1998 by Elsevier Science Inc. All rights reserved.
Resumo:
Two basic representations of principal-agent relationships, the 'state-space' and 'parameterized distribution' formulations, have emerged. Although the state-space formulation appears more natural, analytical studies using this formulation have had limited success. This paper develops a state-space formulation of the moral-hazard problem using a general representation of production under uncertainty. A closed-form solution for the agency-cost problem is derived. Comparative-static results are deduced. Next we solve the principal's problem of selecting the optimal output given the agency-cost function. The analysis is applied to the problem of point-source pollution control. (C) 1998 Published by Elsevier Science S.A. All rights reserved.
Resumo:
The high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a cytokine-specific alpha-subunit (hGMR alpha) and a common signal-transducing beta-subunit (hpc) that is shared with the interleukin-3 and -5 receptors, We have previously identified a constitutively active extracellular point mutant of hpc, I374N, that can confer factor independence on murine FDC-P1 cells but not BAF-B03 or CTLL-2 cells (Jenkins, B. J., D'Andrea, R. J., and Gonda, T. J. (1995) EMBO J. 14, 4276-4287), This restricted activity suggested the involvement of cell type-specific signaling molecules in the activation of this mutant. We report here that one such molecule is the mouse GMR alpha (mGMR alpha) subunit, since introduction of mGMR alpha, but not hGMR alpha, into BAF-B03 or CTLL-2 cells expressing the I374N mutant conferred factor independence, Experiments utilizing mouse/human chimeric GMR alpha subunits indicated that the species specificity lies in the extracellular domain of GMRa. Importantly, the requirement for mGMR alpha correlated with the ability of I374N (but not wild-type hpc) to constitutively associate with mGMRa. Expression of I374N in human factor-dependent UT7 cells also led to factor-independent proliferation, with concomitant up-regulation of hGMR alpha surface expression. Taken together, these findings suggest a critical role for association with GMR alpha in the constitutive activity of I374N.
Resumo:
To translate and transfer solution data between two totally different meshes (i.e. mesh 1 and mesh 2), a consistent point-searching algorithm for solution interpolation in unstructured meshes consisting of 4-node bilinear quadrilateral elements is presented in this paper. The proposed algorithm has the following significant advantages: (1) The use of a point-searching strategy allows a point in one mesh to be accurately related to an element (containing this point) in another mesh. Thus, to translate/transfer the solution of any particular point from mesh 2 td mesh 1, only one element in mesh 2 needs to be inversely mapped. This certainly minimizes the number of elements, to which the inverse mapping is applied. In this regard, the present algorithm is very effective and efficient. (2) Analytical solutions to the local co ordinates of any point in a four-node quadrilateral element, which are derived in a rigorous mathematical manner in the context of this paper, make it possible to carry out an inverse mapping process very effectively and efficiently. (3) The use of consistent interpolation enables the interpolated solution to be compatible with an original solution and, therefore guarantees the interpolated solution of extremely high accuracy. After the mathematical formulations of the algorithm are presented, the algorithm is tested and validated through a challenging problem. The related results from the test problem have demonstrated the generality, accuracy, effectiveness, efficiency and robustness of the proposed consistent point-searching algorithm. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Over-expression of the c-myb gene and expression of activated forms of myb are known to transform haemopoietic cells, particularly cells of the myeloid lineage. Truncations or mutations that disrupt the negative regulatory domain (NRD) of the Myb protein confer an increased ability to transform cells. Although it has proved difficult to link mutations in c-MYB to human leukaemia, no studies investigating the presence of mutations within the c-MYB NRD have been reported. Therefore, we have performed mutational analysis of this region, using polymerase chain reaction-single-stranded conformation polymorphism and sequence analysis, in 26 patients with acute or chronic myeloid leukaemia, No mutations were detected, indicating that mutation of this region of the Myb protein is not common in the pathogenesis or progression of these diseases.