969 resultados para External magnetic field
Resumo:
The use of stem cells is a promising therapeutic approach for the substantial challenge to regenerate cartilage. Considering the two prerequisites, namely the use of a 3D system to enable the chondrogenic differentiation and growth factors to avoid dedifferentiation, the diffusion efficiency of essential biomolecules is an intrinsic issue. We already proposed a liquified bioencapsulation system containing solid microparticles as cell adhesion sites1. Here, we intend to use the optimized system towards chondrogenic differentiation by encapsulating stem cells and collagenII-TGF-β3 PLLA microparticles. As a proof-of-concept, magnetite-nanoparticles were incorporated into the multilayered membrane. This can be a great advantage after implantation procedures to fixate the capsules in situ with the held of an external magnetic patch and for the follow-up through imaging. Results showed that the production of glycosaminoglycans and the expression of cartilage-relevant markers (collagen II, Sox9, aggrecan, and COMP) increased up to 28 days, while hypertrophic (collagen X) and fibrotic (collagen I) markers were downregulated. The presence of nanofibers in the newly deposited ECM was visualized by SEM, which resembles the collagen fibrils of native cartilage. The presence of the major constituent of cartilage, collagen II, was detected by immunocytochemistry and afranin-O and alcian blue stainings revealed a basophilic ECM deposition, which is characteristic of neocartilage. These findings suggest that the proposed system may provide a suitable environment for chondrogenic differentiation.
Resumo:
The manipulation of electric ordering with applied magnetic fields has been realized on magnetoelectric (ME) materials, however, their ME switching is often accompanied by significant hysteresis and coercivity that represents, for some applications, a severe weakness. To overcome this obstacle, this work focus on the development of a new type of ME polymer nanocomposites that exhibits tailored ME response at room temperature. The multiferroic nanocomposites are based on three different ferrite nanoparticles, Zn0.2Mn0.8Fe2O4 (ZMFO), CoFe2O4 (CFO) and Fe3O4 (FO), dispersed in a piezoelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE), matrix. No substantial differences were detected on the time-stable piezoelectric response of the composites (≈ -28 pC.N−1) with distinct ferrite fillers and for the same ferrite content of 10wt.%. Magnetic hysteresis loops from pure ferrite nanopowders showed different magnetic responses. ME results of the nanocomposite films with 10wt.% ferrite content revealed that the ME induced voltage increases with increasing DC magnetic field until a maximum of 6.5 mV∙cm−1∙Oe−1, at an optimum magnetic field of 0.26 T, and 0.8 mV∙cm−1∙Oe−1, at an optimum magnetic field of 0.15T, for the CFO/P(VDF-TrFE) and FO/P(VDF-TrFE) composites, respectively. On the contrary, the ME response of the ZMFO/P(VDF-TrFE) exposed no hysteresis and high dependence on the ZMFO filler content. Possible innovative applications such as memories and information storage, signal processing, ME sensors and oscillators have been addressed for such ferrite/PVDF nanocomposites.
Resumo:
Companies and researchers involved in developing miniaturized electronic devices face the basic problem of the needed batteries size, finite life of time and environmental pollution caused by their final deposition. The current trends to overcome this situation point towards Energy Harvesting technology. These harvesters (or scavengers) store the energy from sources present in the ambient (as wind, solar, electromagnetic, etc) and are costless for us. Piezoelectric devices are the ones that show a higher power density, and materials as ceramic PZT or polymeric PVDF have already demonstrated their ability to act as such energy harvester elements. Combinations between piezoelectric and electromagnetic mechanism have been also extensively investigated. Nevertheless, the power generated by these combinations is limited under the application of small magnetic fields, reducing the performance of the energy harvester [1]. In the last years the appearance of magnetoelectric (ME) devices, in which the piezoelectric deformation is driven by the magnetostrictive element, enables to extract the energy of very small electromagnetic signals through the generated magnetoelectric voltage at the piezoelectric element. However, very little work has been done testing PVDF polymer as piezoelectric constituent of the ME energy harvester device, and only to be proposed as a possibility of application [2]. Among the advantages of using piezopolymers for vibrational energy harvesting we can remember that they are ductile, resilient to shock, deformable and lightweight. In this work we demonstrate the feasibility of using magnetostrictive Fe-rich magnetic amorphous alloys/piezoelectric PVDF sandwich-type laminated ME devices as energy harvesters. A very simple experimental set-up will show how these laminates can extract energy, in amounts of μW, from an external AC field.
Resumo:
RESUME Les améliorations méthodologiques des dernières décennies ont permis une meilleure compréhension de la motilité gastro-intestinale. Il manque toutefois une méthode qui permette de suivre la progression du chyme le long du tube gastro-intestinal. Pour permettre l'étude de la motilité de tout le tractus digestif humain, une nouvelle technique, peu invasive, a été élaborée au Département de Physiologie, en collaboration avec l'EPFL. Appelée "Magnet Tracking", la technique est basée sur la détection du champ magnétique généré par des matériaux ferromagnétiques avalés. A cet usage, une pilule magnétique, une matrice de capteurs et un logiciel ont été développés. L'objet de ce travail est de démontrer la faisabilité d'un examen de la motilité gastro-intestinale chez l'Homme par cette méthode. L'aimant est un cylindre (ø 6x7 mm, 0.2 cm3) protégé par une gaine de silicone. Le système de mesure est constitué d'une matrice de 4x4 capteurs et d'un ordinateur portable. Les capteurs fonctionnent sur l'effet Hall. Grâce à l'interface informatique, l'évolution de la position de l'aimant est suivie en temps réel à travers tout le tractus digestif. Sa position est exprimée en fonction du temps ou reproduite en 3-D sous forme d'une trajectoire. Différents programmes ont été crées pour analyser la dynamique des mouvements de l'aimant et caractériser la motilité digestive. Dix jeunes volontaires en bonne santé ont participé à l'étude. L'aimant a été avalé après une nuit de jeûne et son séjour intra digestif suivi pendant 2 jours consécutifs. Le temps moyen de mesure était de 34 heures. Chaque sujet a été examiné une fois sauf un qui a répété sept fois l'expérience. Les sujets restaient en décubitus dorsal, tranquilles et pouvaient interrompre la mesure s'ils le désiraient. Ils sont restés à jeûne le premier jour. L'évacuation de l'aimant a été contrôlée chez tous les sujets. Tous les sujets ont bien supporté l'examen. Le marqueur a pu être détecté de l'oesophage au rectum. La trajectoire ainsi constituée représente une conformation de l'anatomie digestive : une bonne superposition de celle-ci à l'anatomie est obtenue à partir des images de radiologie conventionnelle (CT-scan, lavement à la gastrografine). Les mouvements de l'aimant ont été caractérisés selon leur périodicité, leur amplitude ou leur vitesse pour chaque segment du tractus digestif. Ces informations physiologiques sont bien corrélées à celles obtenues par des méthodes établies d'étude de la motilité gastro-intestinale. Ce travail démontre la faisabilité d'un examen de la motilité gastro-intestinal chez l'Homme par la méthode de Magnet Tracking. La technique fournit les données anatomiques et permet d'analyser en temps réel la dynamique des mouvements du tube digestif. Cette méthode peu invasive ouvre d'intéressantes perspectives pour l'étude de motilité dans des conditions physiologiques et pathologiques. Des expériences visant à valider cette approche en tant que méthode clinique sont en voie de réalisation dans plusieurs centres en Suisse et à l'étranger. SUMMARY Methodological improvements realised over the last decades have permitted a better understanding of gastrointestinal motility. Nevertheless, a method allowing a continuous following of lumina' contents is still lacking. In order to study the human digestive tract motility, a new minimally invasive technique was developed at the Department of Physiology in collaboration with Swiss Federal Institute of Technology. The method is based on the detection of magnetic field generated by swallowed ferromagnetic materials. The aim of our work was to demonstrate the feasibility of this new approach to study the human gastrointestinal motility. The magnet used was a cylinder (ø6x7mm, 0.2 cm3) coated with silicon. The magnet tracking system consisted of a 4x4 matrix of sensors based on the Hall effect Signals from the sensors were digitised and sent to a laptop computer for processing and storage. Specific software was conceived to analyse in real time the progression of the magnet through the gastrointestinal tube. Ten young and healthy volunteers were enrolled in the study. After a fasting period of 12 hours, they swallowed the magnet. The pill was then tracked for two consecutive days for 34 hours on average. Each subject was studied once except one who was studied seven times. Every subject laid on his back for the entire experiment but could interrupt it at anytime. Evacuation of the magnet was controlled in all subjects. The examination was well tolerated. The pill could be followed from the esophagus to the rectum. The trajectory of the magnet represented a "mould" of the anatomy of the digestive tube: a good superimposition with radiological anatomy (gastrografin contrast and CT) was obtained. Movements of the magnet were characterized by periodicity, velocity, and amplitude of displacements for every segment of the digestive tract. The physiological information corresponded well to data from current methods of studying gastrointestinal motility. This work demonstrates the feasibility of the new approach in studies of human gastrointestinal motility. The technique allows to correlate in real time the dynamics of digestive movements with the anatomical data. This minimally invasive method is ready for studies of human gastrointestinal motility under physiological as well as pathological conditions. Studies aiming at validation of this new approach as a clinically relevant tool are being realised in several centres in Switzerland and abroad. Abstract: A new minimally invasive technique allowing for anatomical mapping and motility studies along the entire human digestive system is presented. The technique is based on continuous tracking of a small magnet progressing through the digestive tract. The coordinates of the magnet are calculated from signals recorded by 16 magnetic field sensors located over the abdomen. The magnet position, orientation and trajectory are displayed in real time. Ten young healthy volunteers were followed during 34 h. The technique was well tolerated and no complication was encountered, The information obtained was 3-D con-figuration of the digestive tract and dynamics of the magnet displacement (velocity, transit time, length estimation, rhythms). In the same individual, repea-ted examination gave very reproducible results. The anatomical and physiological information obtained corresponded well to data from current methods and imaging. This simple, minimally invasive technique permits examination of the entire digestive tract and is suitable for both research and clinical studies. In combination with other methods, it may represent a useful tool for studies of Cl motility with respect to normal and pathological conditions.
Resumo:
The simultaneous recording of scalp electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can provide unique insights into the dynamics of human brain function, and the increased functional sensitivity offered by ultra-high field fMRI opens exciting perspectives for the future of this multimodal approach. However, simultaneous recordings are susceptible to various types of artifacts, many of which scale with magnetic field strength and can seriously compromise both EEG and fMRI data quality in recordings above 3T. The aim of the present study was to implement and characterize an optimized setup for simultaneous EEG-fMRI in humans at 7T. The effects of EEG cable length and geometry for signal transmission between the cap and amplifiers were assessed in a phantom model, with specific attention to noise contributions from the MR scanner coldheads. Cable shortening (down to 12cm from cap to amplifiers) and bundling effectively reduced environment noise by up to 84% in average power and 91% in inter-channel power variability. Subject safety was assessed and confirmed via numerical simulations of RF power distribution and temperature measurements on a phantom model, building on the limited existing literature at ultra-high field. MRI data degradation effects due to the EEG system were characterized via B0 and B1(+) field mapping on a human volunteer, demonstrating important, although not prohibitive, B1 disruption effects. With the optimized setup, simultaneous EEG-fMRI acquisitions were performed on 5 healthy volunteers undergoing two visual paradigms: an eyes-open/eyes-closed task, and a visual evoked potential (VEP) paradigm using reversing-checkerboard stimulation. EEG data exhibited clear occipital alpha modulation and average VEPs, respectively, with concomitant BOLD signal changes. On a single-trial level, alpha power variations could be observed with relative confidence on all trials; VEP detection was more limited, although statistically significant responses could be detected in more than 50% of trials for every subject. Overall, we conclude that the proposed setup is well suited for simultaneous EEG-fMRI at 7T.
Resumo:
The biological and therapeutic responses to hyperthermia, when it is envisaged as an anti-tumor treatment modality, are complex and variable. Heat delivery plays a critical role and is counteracted by more or less efficient body cooling, which is largely mediated by blood flow. In the case of magnetically mediated modality, the delivery of the magnetic particles, most often superparamagnetic iron oxide nanoparticles (SPIONs), is also critically involved. We focus here on the magnetic characterization of two injectable formulations able to gel in situ and entrap silica microparticles embedding SPIONs. These formulations have previously shown suitable syringeability and intratumoral distribution in vivo. The first formulation is based on alginate, and the second on a poly(ethylene-co-vinyl alcohol) (EVAL). Here we investigated the magnetic properties and heating capacities in an alternating magnetic field (141 kHz, 12 mT) for implants with increasing concentrations of magnetic microparticles. We found that the magnetic properties of the magnetic microparticles were preserved using the formulation and in the wet implant at 37 degrees C, as in vivo. Using two orthogonal methods, a common SLP (20 Wg(-1)) was found after weighting by magnetic microparticle fraction, suggesting that both formulations are able to properly carry the magnetic microparticles in situ while preserving their magnetic properties and heating capacities. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Els monopols es defineixen, teòricament, com càrregues que generen camps amb divergència diferent de cero. Malgrat això, les entitats amb comportament mimètic al dels monopols magnètics, segueix sent compatible amb ∇·B=0, han estat detectades experimentalment en gels d’espín (‘spin-ices’). Aquesta aparent contradicció pot generar confusió i, per tant, requereix explicació. D’altra banda, s’estudien propietats duals del materials amb càrregues magnètiques efectives tals com la ‘magnetricity’ en els ‘spinices’ (conductivitat de les càrregues magnètiques davant un camp magnètic extern). Com una conseqüència de la magnetricitat, l’apantallament del camp magnètic en materials amb càrregues magnètiques és analitzat. Estudio la propagació d’ones electromagnètiques transversals en medis materials infinits i en plasmes magnètics diluïts davant la presència de camps elèctrics externs constants. Aquesta propagació és dual a la propagació d’ones en plasmes de càrregues elèctriques davant la presència de camps magnètics externs, constants. Finalment, estudio el frenat elèctric d’un conductor de càrregues magnètiques amb un efecte dual al frenat magnètic en conductors elèctrics.
Resumo:
BACKGROUND: Transient balanced steady-state free-precession (bSSFP) has shown substantial promise for noninvasive assessment of coronary arteries but its utilization at 3.0 T and above has been hampered by susceptibility to field inhomogeneities that degrade image quality. The purpose of this work was to refine, implement, and test a robust, practical single-breathhold bSSFP coronary MRA sequence at 3.0 T and to test the reproducibility of the technique. METHODS: A 3D, volume-targeted, high-resolution bSSFP sequence was implemented. Localized image-based shimming was performed to minimize inhomogeneities of both the static magnetic field and the radio frequency excitation field. Fifteen healthy volunteers and three patients with coronary artery disease underwent examination with the bSSFP sequence (scan time = 20.5 ± 2.0 seconds), and acquisitions were repeated in nine subjects. The images were quantitatively analyzed using a semi-automated software tool, and the repeatability and reproducibility of measurements were determined using regression analysis and intra-class correlation coefficient (ICC), in a blinded manner. RESULTS: The 3D bSSFP sequence provided uniform, high-quality depiction of coronary arteries (n = 20). The average visible vessel length of 100.5 ± 6.3 mm and sharpness of 55 ± 2% compared favorably with earlier reported navigator-gated bSSFP and gradient echo sequences at 3.0 T. Length measurements demonstrated a highly statistically significant degree of inter-observer (r = 0.994, ICC = 0.993), intra-observer (r = 0.894, ICC = 0.896), and inter-scan concordance (r = 0.980, ICC = 0.974). Furthermore, ICC values demonstrated excellent intra-observer, inter-observer, and inter-scan agreement for vessel diameter measurements (ICC = 0.987, 0.976, and 0.961, respectively), and vessel sharpness values (ICC = 0.989, 0.938, and 0.904, respectively). CONCLUSIONS: The 3D bSSFP acquisition, using a state-of-the-art MR scanner equipped with recently available technologies such as multi-transmit, 32-channel cardiac coil, and localized B0 and B1+ shimming, allows accelerated and reproducible multi-segment assessment of the major coronary arteries at 3.0 T in a single breathhold. This rapid sequence may be especially useful for functional imaging of the coronaries where the acquisition time is limited by the stress duration and in cases where low navigator-gating efficiency prohibits acquisition of a free breathing scan in a reasonable time period.
Resumo:
We report the design and validation of simple magnetic tweezers for oscillating ferromagnetic beads in the piconewton and nanometer scales. The system is based on a single pair of coaxial coils operating in two sequential modes: permanent magnetization of the beads through a large and brief pulse of magnetic field and generation of magnetic gradients to produce uniaxial oscillatory forces. By using this two step method, the magnetic moment of the beads remains constant during measurements. Therefore, the applied force can be computed and varies linearly with the driving signal. No feedback control is required to produce well defined force oscillations over a wide bandwidth. The design of the coils was optimized to obtain high magnetic fields (280 mT) and gradients (2 T/m) with high homogeneity (5% variation) within the sample. The magnetic tweezers were implemented in an inverted optical microscope with a videomicroscopy-based multiparticle tracking system. The apparatus was validated with 4.5 ¿m magnetite beads obtaining forces up to ~2 pN and subnanometer resolution. The applicability of the device includes microrheology of biopolymer and cell cytoplasm, molecular mechanics, and mechanotransduction in living cells.
Resumo:
Within current-density-functional theory, we have studied a quantum dot made of 210 electrons confined in a disk geometry. The ground state of this large dot exhibits some features as a function of the magnetic field (Beta) that can be attributed in a clear way to the formation of compressible and incompressible states of the system. The orbital and spin angular momenta, the total energy, ionization and electron chemical potentials of the ground state, as well as the frequencies of far-infrared edge modes are calculated as a function of Beta, and compared with available experimental and theoretical results.
Resumo:
A density-functional self-consistent calculation of the ground-state electronic density of quantum dots under an arbitrary magnetic field is performed. We consider a parabolic lateral confining potential. The addition energy, E(N+1)-E(N), where N is the number of electrons, is compared with experimental data and the different contributions to the energy are analyzed. The Hamiltonian is modeled by a density functional, which includes the exchange and correlation interactions and the local formation of Landau levels for different equilibrium spin populations. We obtain an analytical expression for the critical density under which spontaneous polarization, induced by the exchange interaction, takes place.
Resumo:
Within the noncollinear local spin-density approximation, we have studied the ground state structure of a parabolically confined quantum wire submitted to an in-plane magnetic field, including both Rashba and Dresselhaus spin-orbit interactions. We have explored a wide range of linear electronic densities in the weak (strong) coupling regimes that appear when the ratio of spin-orbit to confining energy is small (large). These results are used to obtain the conductance of the wire. In the strong coupling limit, the interplay between the applied magnetic field¿irrespective of the in-plane direction, the exchange-correlation energy, and the spin-orbit energy-produces anomalous plateaus in the conductance vs linear density plots that are otherwise absent, or washes out plateaus that appear when the exchange-correlation energy is not taken into account.
Resumo:
Applying a magnetic field to a ferromagnetic Ni50Mn34In16 alloy in the martensitic state induces a structural phase transition to the austenitic state. This is accompanied by a strain which recovers on removing the magnetic field, giving the system a magnetically superelastic character. A further property of this alloy is that it also shows the inverse magnetocaloric effect. The magnetic superelasticity and the inverse magnetocaloric effect in Ni-Mn-In and their association with the first-order structural transition are studied by magnetization, strain, and neutron-diffraction studies under magnetic field.
Resumo:
We report on measurements of the adiabatic temperature change in the inverse magnetocaloric Ni50Mn34In16 alloy. It is shown that this alloy heats up with the application of a magnetic field around the Curie point due to the conventional magnetocaloric effect. In contrast, the inverse magnetocaloric effect associated with the martensitic transition results in the unusual decrease of temperature by adiabatic magnetization. We also provide magnetization and specific heat data which enable to compare the measured temperature changes to the values indirectly computed from thermodynamic relationships. Good agreement is obtained for the conventional effect at the second-order paramagnetic-ferromagnetic phase transition. However, at the first-order structural transition the measured values at high fields are lower than the computed ones. Irreversible thermodynamics arguments are given to show that such a discrepancy is due to the irreversibility of the first-order martensitic transition.
Resumo:
Partial crystallization of the metallic glass Co66Si16B12Fe4Mo2 was performed by annealing at temperatures between 500 and 540°C for 10-20 min, resulting in crystallite volume fractions of (0.7-5)×10¿3 and sizes of 50-100 nm. This two-phase alloy presents a remarkable feature: a hysteresis loop shift that can be tailored by simply premagnetizing the sample in the adequate magnetic field. Shifts as large as five times the coercive field have been obtained which make them interesting for application as magnetic cores in dc pulse transformers. The asymetrical magnetic reversal is explained in terms of the magnetic dipolar field interaction and the observed hysteresis loops have been satisfactorily simulated by a modification of Stoner-Wohlfarth¿s model of coherent rotations.