436 resultados para Eutectic Solder
Resumo:
The mercury-indium phase diagram has been investigated over the whole composition range from -78°C to the melting point of indium, using thermal analysis, X-ray and superconductivity techniques. This is believed to be the first application of superconductivity measurements to phase diagram investigations. A compound, HgIn, of very limited range of composition, melts congruently at -19.3°C; and gives rise to eutectics at 61.5 at. % indium and -31°C, and at 34.7% indium and -37.2°C. The β phase extends from 2.5 to 19.1 % indium and has a maximum melting point of -14.2°C at 14.2% indium. It forms a peritectic or eutectic at a temperature indistinguishable from the melting point of pure mercury with a solid solution in mercury containing some, but less than 0.3%, indium. A transition from face-centred tetragonal to face-centred cubic in the indium-rich solid solutions at about 93% indium gives rise to a peritectic at 108°C. The solubility of mercury in this face-centred cubic phase falls from about 22% at-31°C to 13% at -78°C. © 1963.
Resumo:
With the continued miniaturization and increasing performance of electronic devices, new technical challenges have arisen. One such issue is delamination occurring at critical interfaces inside the device. This major reliability issue can occur during the manufacturing process or during normal use of the device. Proper evaluation of the adhesion strength of critical interfaces early in the product development cycle can help reduce reliability issues and time-to-market of the product. However, conventional adhesion strength testing is inherently limited in the face of package miniaturization, which brings about further technical challenges to quantify design integrity and reliability. Although there are many different interfaces in today's advanced electronic packages, they can be generalized into two main categories: 1) rigid to rigid connections with a thin flexible polymeric layer in between, or 2) a thin film membrane on a rigid structure. Knowing that every technique has its own advantages and disadvantages, multiple testing methods must be enhanced and developed to be able to accommodate all the interfaces encountered for emerging electronic packaging technologies. For evaluating the adhesion strength of high adhesion strength interfaces in thin multilayer structures a novel adhesion test configuration called “single cantilever adhesion test (SCAT)” is proposed and implemented for an epoxy molding compound (EMC) and photo solder resist (PSR) interface. The test method is then shown to be capable of comparing and selecting the stronger of two potential EMC/PSR material sets. Additionally, a theoretical approach for establishing the applicable testing domain for a four-point bending test method was presented. For evaluating polymeric films on rigid substrates, major testing challenges are encountered for reducing testing scatter and for factoring in the potentially degrading effect of environmental conditioning on the material properties of the film. An advanced blister test with predefined area test method was developed that considers an elasto-plastic analytical solution and implemented for a conformal coating used to prevent tin whisker growth. The advanced blister testing with predefined area test method was then extended by employing a numerical method for evaluating the adhesion strength when the polymer’s film properties are unknown.
Resumo:
“Copyright © [2014] IEEE. Reprinted from 1st International Workshop on Cognitive Cellular Systems 2014 . ISBN: 978-1-4799-4139-1 .This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.”
Resumo:
The effect of isothermal aging on the harmonic vibration durability of Sn3.0Ag0.5Cu solder interconnects is examined. Printed wiring assemblies with daisy-chained leadless chip resistors (LCRs) are aged at 125°C for 0, 100, and 500 hours. These assemblies are instrumented with accelerometers and strain gages to maintain the same harmonic vibration profile in-test, and to characterize PWB behavior. The tested assemblies are excited at their first natural frequencies until LCRs show a resistance increase of 20%. Dynamic finite element models are employed to generate strain transfer functions, which relate board strain levels observed in-test to respective solder strain levels. The transfer functions are based on locally averaged values of strains in critical regions of the solder and in appropriate regions of the PWB. The vibration test data and the solder strains from FEA are used to estimate lower-bound material fatigue curves for SAC305 solder materials, as a function of isothermal pre-aging.
Resumo:
No contexto da utilização de solventes alternativos mais sustentáveis e eficientes, capazes de substituir solventes orgânicos convencionais que apresentam várias desvan-tagens tais como toxicidade, inflamabilidade, volatilidade, etc., foram propostos na lite-ratura várias alternativas entre as quais os solventes eutécticos de origem natural. Para potenciar a sua aplicação em diversas áreas, incluindo a tecnologia biomédica, é necessário estudar as suas propriedades físicas dada a ainda insuficiente base de dados disponível. Assim, o principal objetivo deste trabalho é efetuar a medição da massa vo-lúmica, da viscosidade e do índice de refração de solventes eutécticos de origem natural, formados por cloreto de colina e açúcares, ácidos orgânicos ou álcoois. Para isso, foram escolhidos quatro sistemas modelo, já propostos na literatura: glicerol + cloreto de coli-na + água (proporção molar 2:1:1); glucose + cloreto de colina + água (2:5:5); sacarose + cloreto de colina + água (1:4:4); ácido málico + cloreto de colina + água (1:1:2). Fo-ram ainda avaliados os efeitos da adição de água e/ou da temperatura nas diferentes propriedades físicas. A viscosidade dos solventes eutécticos foi medida entre 293,15 K e 323,15 K, para valores de fração mássica de água entre 5% e 30%. Nesta gama de temperatura, os da-dos experimentais foram modelizados de forma satisfatória por uma equação do tipo Arrhenius. Como esperado, a viscosidade diminuiu com o aumento da temperatura e com o aumento de conteúdo em água. De facto, um aumento da temperatura de 20 °C para 50 °C traduz-se numa diminuição muito significativa da viscosidade dos solventes estudados. O índice de refração foi medido à temperatura de 298,15 K, obtendo-se valores na gama 1,41-1,50. Finalmente, a massa volúmica foi medida entre 298,15 K e 333,15 K. Verifica-se que, nas condições estudadas, a massa volúmica diminui linearmente com a temperatura e com o aumento da fração mássica de água, sendo muito menos sensível ao conteúdo em água ou à temperatura do que a viscosidade.
Resumo:
The failure of materials is always an unwelcome event for several reasons: human lives are put in danger, economic losses, and interference in the availability of products and services. Although the causes of failures and behaviour of materials can be known, the prevention of such a condition is difficult to be guaranteed. Among the failures, wear abrasion by the low voltage is the kind of failure that occurs in more equipment and parts industry. The Plants Sucroalcooleiras suffer significant losses because of such attrition, this fact that motivated their choice for the development of this work. For both, were considered failures in the swing hammers desfibradores stopped soon after the exchange provided in accordance with tonnage of cane processed, then were analyzed by the level of wear testing of rubber wheel defined by the standard ASTM G65-91.The failures were classified as to the origin of the cause and mechanism, moreover, were prepared with samples of welding procedures according to ASME code, sec. IX as well, using the technique of thermal spraying to analyze the performance of these materials produced in laboratories, and compares them with the solder used in the plant. It was observed that the bodies-of-proof prepared by the procedure described as welding, and the thermal spraying the results of losing weight have been minimized significantly compared to the preparations in the plant. This is because the use of techniques more appropriate and more controlled conditions of the parameters of welding. As for the thermal spraying, this technique has presented a satisfactory result, but requires the use of these coatings in the best condition for real affirmation of the results
Resumo:
240 p.
Resumo:
Rainflow counting methods convert a complex load time history into a set of load reversals for use in fatigue damage modeling. Rainflow counting methods were originally developed to assess fatigue damage associated with mechanical cycling where creep of the material under load was not considered to be a significant contributor to failure. However, creep is a significant factor in some cyclic loading cases such as solder interconnects under temperature cycling. In this case, fatigue life models require the dwell time to account for stress relaxation and creep. This study develops a new version of the multi-parameter rainflow counting algorithm that provides a range-based dwell time estimation for use with time-dependent fatigue damage models. To show the applicability, the method is used to calculate the life of solder joints under a complex thermal cycling regime and is verified by experimental testing. An additional algorithm is developed in this study to provide data reduction in the results of the rainflow counting. This algorithm uses a damage model and a statistical test to determine which of the resultant cycles are statistically insignificant to a given confidence level. This makes the resulting data file to be smaller, and for a simplified load history to be reconstructed.
Resumo:
Metal-ceramic interfaces are present in tricone drill bits with hard ceramic inserts for oil well drilling operations. The combination of actions of cutting, crushing and breaking up of rocks results in the degradation of tricone drill bits by wear, total or partial rupture of the drill bit body or the ceramic inserts, thermal shock and corrosion. Also the improper pressfitting of the ceramic inserts on the bit body may cause its total detachment, and promote serious damages to the drill bit. The improvement on the production process of metal-ceramic interfaces can eliminate or minimize some of above-mentioned failures presented in tricone drill bits, optimizing their lifetime and so reducing drilling metric cost. Brazing is a widely established technique to join metal-ceramic materials, and may be an excellent alternative to the common mechanical press fitting process of hard ceramic inserts on the steel bit body for tricone drill bit. Wetting phenomena plays an essential role in the production of metal/ceramic interfaces when a liquid phase is present in the process. In this work, 72Silver-28Copper eutectic based brazing alloys were melted onto zirconia, silicon nitride and tungsten carbide/Co substrates under high vacuum. Contact angle evolution was measured and graphically plotted, and the interfaces produced were analysed by SEM-EDX. The AgCu eutectic alloy did not wet any ceramic substrates, showing high contact angles, and so without chemical interaction between the materials. Better results were found for the systemns containing 3%wt of titanium in the AgCu alloy. The presence os titanium as a solute in the alloy produces wettable cand termodinamically stable compounds, increasing the ceramics wetting beahviour
Resumo:
Metal-Ceramic (M/C) Zirconia-stainless steel interfaces have been processed through brazing techniques due to the excellent combination of properties such as high temperature stability, high corrosion resistance and good mechanical properties. However, some M/C interfaces show some defects, like porosity and cracks results in the degradation of the interfaces, leading even to its total rupture. Most of time, those defects are associated with an improper brazing parameters selection to the M/C system. In this work, ZrO2 Y-TZP and ZrO2 Mg - PSZ were joint with the stainless steel grade 304 by brazing using a eutectic silver-copper (Ag28Cu) interlayer alloy with different thermal cycles. Ceramic surfaces were previous mechanically metallized with titanium to improve adhesion of the system. The effect of temperature on the M/C interface was studied. SEM-EDS and 3 point flexural bend test were performed to evaluate morphology, chemical composition and mechanical resistance of the M/C interfaces. Lower thermal cycle temperatures produced better results of mechanical resistance, and more regular/ homogeneous reaction layers between braze alloy and metal-ceramic surfaces. Also was proved the AgCu braze alloy activation in situ by titanium
Resumo:
Nanostructured carbons with relatively high nitrogen content (3–8%) and different micro and mesoporosity ratio were prepared by activation of polyaniline (PANI) with a ZnCl2–NaCl mixture in the proportion of the eutectic (melting point 270 °C). It was found that the activated carbons consisted of agglomerated nanoparticles. ZnCl2 plays a key role in the development of microporosity and promotes the binding between PANI nanoparticles during heat treatment, whereas NaCl acts as a template for the development of mesoporosity of larger size. Carbons with high micropore and mesopore volumes, above 0.6 and 0.8 cm3/g, respectively, have been obtained. Furthermore, these materials have been tested for CO2 capture and storage at pressures up to 4 MPa. The results indicate that the nitrogen groups present in the surface do not seem to affect to the amount of CO2 adsorbed, not detecting strong interactions between CO2 molecules and nitrogen functional groups of the carbon, which are mainly pyridinic and pyrrolic groups.
Resumo:
Gasarite structures are a unique type of metallic foam containing tubular pores. The original methods for their production limited them to laboratory study despite appealing foam properties. Thermal decomposition processing of gasarites holds the potential to increase the application of gasarite foams in engineering design by removing several barriers to their industrial scale production. The following study characterized thermal decomposition gasarite processing both experimentally and theoretically. It was found that significant variation was inherent to this process therefore several modifications were necessary to produce gasarites using this method. Conventional means to increase porosity and enhance pore morphology were studied. Pore morphology was determined to be more easily replicated if pores were stabilized by alumina additions and powders were dispersed evenly. In order to better characterize processing, high temperature and high ramp rate thermal decomposition data were gathered. It was found that the high ramp rate thermal decomposition behavior of several hydrides was more rapid than hydride kinetics at low ramp rates. This data was then used to estimate the contribution of several pore formation mechanisms to the development of pore structure. It was found that gas-metal eutectic growth can only be a viable pore formation mode if non-equilibrium conditions persist. Bubble capture cannot be a dominant pore growth mode due to high bubble terminal velocities. Direct gas evolution appears to be the most likely pore formation mode due to high gas evolution rate from the decomposing particulate and microstructural pore growth trends. The overall process was evaluated for its economic viability. It was found that thermal decomposition has potential for industrialization, but further refinements are necessary in order for the process to be viable.
Resumo:
The addition of heavy rare earth (RE) elements to Nd2Fe14B based magnets to form (Nd,Dy)2Fe14B is known to increase the coercivity and high temperature performance required for hybrid vehicle electric motors and other extreme temperature applications. Attempts to conserve heavy rare earth elements for high temperature (RE)2Fe14B based magnets have led to the development of a grain boundary diffusion process for bulk magnets. This process relies on transport of a heavy rare earth, such as Dy, into a bulk Nd2Fe14B magnet along pores, a low volume fraction of eutectic liquid along grain boundary grain triple junctions and grain boundaries. This enriches the grain surfaces in Dy through the thickness of the bulk magnet, leading to larger increases coercivity with a smaller Dy concentration than can be achieved with homogeneous alloys. Attempts to carry out the same process during sintering require significant control of Dy transport efficiency. The macroscopic transport of Dy in Nd2.7Fe14B1.4 based powder packs is studied using a 'layered' pellet, where Nd2.7Fe14B1.4powder is an interlayer and Dy source as a center layer. The sintering of this layered pellet provided evidence for very large effective diffusion lengths aided by Dy rich liquid flow through connected porosity. Approaches to controlling Dy transportation include decreasing the liquid phase transport capability of the powder pack by increasing the melting point of the Dy source and the decreasing amount of RE rich liquid in the powder packs. The solid-liquid reaction is studied in which melt spun Nd2.7Fe14B1.4 ribbons are PVD coated with Dy-Fe eutectic composition and then thermally treated. The resulting microstructure from the reaction between Dy-Fe eutectic coating and Nd2.7Fe14B1.4 ribbon is interpreted as support for a proposed dissolution/reprecipitation process between solid and liquid phases. The estimate the diffusion coefficient and the effective diffusion length of Dy sources in Nd2.7Fe14B1.4 layered pellets and melt spun ribbons were obtained from the calculation of Fick's second law combined with EDS results from the experiment. The results indicate that the effective diffusion coefficient of Dy in the layered pellets is higher than the diffusion in ribbons due to its higher porosity than ribbons.
Resumo:
Solder-joining using metallic solder alloys is an alternative to adhesive bonding. Laser-based soldering processes are especially well suited for the joining of optical components made of fragile and brittle materials such as glasses, ceramics and optical crystals due to a localized and minimized input of thermal energy. The Solderjet Bumping technique is used to assemble a miniaturized laser resonator in order to obtain higher robustness, wider thermal conductivity performance, higher vacuum and radiation compatibility, and better heat and long term stability compared with identical glued devices. The resulting assembled compact and robust green diode-pumped solid-state laser is part of the future Raman Laser Spectrometer designed for the Exomars European Space Agency (ESA) space mission 2018.