885 resultados para Enzyme replacement therapy
Resumo:
Introduction Vascular access devices (VADs), such as peripheral or central venous catheters, are vital across all medical and surgical specialties. To allow therapy or haemodynamic monitoring, VADs frequently require administration sets (AS) composed of infusion tubing, fluid containers, pressure-monitoring transducers and/or burettes. While VADs are replaced only when necessary, AS are routinely replaced every 3–4 days in the belief that this reduces infectious complications. Strong evidence supports AS use up to 4 days, but there is less evidence for AS use beyond 4 days. AS replacement twice weekly increases hospital costs and workload. Methods and analysis This is a pragmatic, multicentre, randomised controlled trial (RCT) of equivalence design comparing AS replacement at 4 (control) versus 7 (experimental) days. Randomisation is stratified by site and device, centrally allocated and concealed until enrolment. 6554 adult/paediatric patients with a central venous catheter, peripherally inserted central catheter or peripheral arterial catheter will be enrolled over 4 years. The primary outcome is VAD-related bloodstream infection (BSI) and secondary outcomes are VAD colonisation, AS colonisation, all-cause BSI, all-cause mortality, number of AS per patient, VAD time in situ and costs. Relative incidence rates of VAD-BSI per 100 devices and hazard rates per 1000 device days (95% CIs) will summarise the impact of 7-day relative to 4-day AS use and test equivalence. Kaplan-Meier survival curves (with log rank Mantel-Cox test) will compare VAD-BSI over time. Appropriate parametric or non-parametric techniques will be used to compare secondary end points. p Values of <0.05 will be considered significant.
Resumo:
Aortic valve stenosis (AS) is an active disease process akin to atherosclerosis, with chronic inflammation, lipid accumulation, extracellular matrix remodeling, fibrosis, and extensive calcification of the valves being characteristic features of the disease. The detailed mechanisms and pathogenesis of AS are still incompletely understood, however, and pharmacological treatments targeted toward components of the disease are not currently available. In this thesis project, my coworkers and I studied stenotic aortic valves obtained from 86 patients undergoing valve replacement for clinically significant AS. Non-stenotic control valves (n=17) were obtained from patients undergoing cardiac transplantation or from organ donors without cardiac disease. We identified a novel inflammatory factor, namely mast cell, in stenotic aortic valves and present evidence showing that this multipotent inflammatory cell may participate in the pathogenesis of AS. Using immunohistochemistry and double immunofluorescence stainings, we found that a considerable number of mast cells accumulate in stenotic valves and, in contrast to normal valves, the mast cells in diseased valves were in an activated state. Moreover, valvular mast cells contained two effective proteases, chymase and cathepsin G, which may participate in adverse remodeling of the valves either by inducing fibrosis (chymase and cathepsin G) or by degrading elastin fibers in the valves (cathepsin G). As chymase and cathepsin G are both capable of generating the profibrotic peptide angiotensin II, we also studied the expression and activity of angiotensin-converting enzyme (ACE) in the valves. Using RT-PCR, imunohistochemistry, and autoradiography, we observed a significant increase in the expression and activity of ACE in stenotic valves. Besides mast cell-derived cathepsin G, aortic valves contained other elastolytic cathepsins (S, K, and V). Using immunohistochemistry, RT-PCR, and fluorometric microassay, we showed that the expression and activity of these cathepsins were augmented in stenotic valves. Furthermore, in stenotic but not in normal valves, we observed a distinctive pattern of elastin fiber degradation and disorganization. Importantly, this characteristic elastin degradation observed in diseased valves could be mimicked by adding exogenous cathepsins to control valves, which initially contained intact elastin fibers. In stenotic leaflets, the collagen/elastin ratio was increased and correlated positively with smoking, a potent AS-accelerating factor. Indeed, cigarette smoke could also directly activate cultured mast cells and fibroblasts. Next, we analyzed the expression and activity of neutral endopeptidase (NEP), which parallels the actions of ACE in degrading bradykinin (BK) and thus inactivates antifibrotic mechanisms in tissues. Real-time RT-PCR and autoradiography revealed NEP expression and activity to be enhanced in stenotic valves compared to controls. Furthermore, both BK receptors (1 and 2) were present in aortic valves and upregulated in stenotic leaflets. Isolated valve myofibroblasts expressed NEP and BK receptors, and their upregulation occurred in response to inflammation. Finally, we observed that the complement system, a source of several proinflammatory mediators and also a potential activator of valvular mast cells, was activated in stenotic valves. Moreover, receptors for the complement-derived effectors C3a and C5a were expressed in aortic valves and in cultured aortic valve myofibroblasts, in which their expression was induced by inflammation as well as by cigarette smoke. In conclusion, our findings revealed several novel mechanisms of inflammation (mast cells and mast cell-derived mediators, complement activation), fibrosis (ACE, chymase, cathepsin G, NEP), and elastin fiber degradation (cathepsins) in stenotic aortic valves and highlighted these effectors as possible pathogenic contributors to AS. These results support the notion of AS as an active process with inflammation and extracellular matrix remodeling as its key features and identify possible new targets for medical therapy in AS.
Resumo:
Angiotensin converting enzyme (ACE) catalyses the conversion of angiotensin I (Ang I) to angiotensin II (Ang II). The ACE activity directly related to hypertension as Ang II is the blood pressure regulating hormone. Therefore, ACE inhibitors are a major class of antihypertensive drugs. Captopril, chemical name, was the first orally active ACE inhibitory antihypertensive drug, discovered in 1977. Since then, a number of such drugs have been synthesized. Enzyme-inhibitor bound crystal structural studies reveal a great deal of understanding about the interactions of the inhibitors at the active site of ACE. This can be helpful in the rational design of ACE inhibitors. With the advancement of the combination therapy, it is known that ACE inhibitors having antioxidant activity can be beneficial for the treatment of hypertension. This study describes the development of ACE inhibitors in the treatment of hypertension. Importance of ACE inhibitors having antioxidant activity is also described.
Resumo:
Angiotensin converting enzyme (ACE) inhibitors are important for the treatment of hypertension as they can decrease the formation of vasopressor hormone angiotensin II (Ang II) and elevate the levels of vasodilating hormone bradykinin. It is observed that bradykinin contains a Ser-Pro-Phe motif near the site of hydrolysis. The selenium analogues of captopril represent a novel class of ACE inhibitors as they also exhibit significant antioxidant activity. In this study, several di- and tripeptides containing selenocysteine and cysteine residues at the N-terminal were synthesized. Hydrolysis of angiotensin I (Ang I) to Ang II by ACE was studied in the presence of these peptides. It is observed that the introduction of L-Phe to Sec-Pro and Cys-Pro peptides significantly increases the ACE inhibitory activity. On the other hand, the introduction of L-Val or L-Ala decreases the inhibitory potency of the parent compounds. The presence of an L-Pro moiety in captopril analogues appears to be important for ACE inhibition as the replacement of L-Pro by L-piperidine 2-carboxylic acid decreases the ACE inhibition. The synthetic peptides were also tested for their ability to scavenge peroxynitrite (PN) and to exhibit glutathione peroxidase (GPx)-like activity. All the selenium-containing peptides exhibited good PN-scavenging and GPx activities.
Resumo:
Iodothyronine deiodinases are selenoenzymes which regulate the thyroid hormone homeostasis by catalyzing the regioselective deiodination of thyroxine (T4). Synthetic deiodinase mimetics are important not only to understand the mechanism of enzyme catalysis, but also to develop therapeutic agents as abnormal thyroid hormone levels have implications in different diseases, such as hypoxia, myocardial infarction, critical illness, neuronal ischemia, tissue injury, and cancer. Described herein is that the replacement of sulfur/selenium atoms in a series of deiodinase mimetics by tellurium remarkably alters the reactivity as well as regioselectivity toward T4. The tellurium compounds reported in this paper represent the first examples of deiodinase mimetics which mediate sequential deiodination of T4 to produce all the hormone derivatives including T0 under physiologically relevant conditions.
Resumo:
A fibrinogen-clotting enzyme designed as jerdonobin-II was isolated from the venom of Trimeresurus jerdonii. It differed in molecular weight and N-terminal sequence with the previously isolated jerdonobin, a thrombin-like enzyme from the same venom. The enzyme consists of a single polypeptide chain with molecular weights of 30,000 and 32,000 under non-reducing and reducing conditions, respectively. Jerdonobin-II showed weak fibrinogen clotting activity and its activity unit on fibrinogen was calculated to be less than one unit using human thrombin as standard. The precursor protein sequence of jerodonobin-II was deduced from cloned cDNA sequence. The sequence shows high similarity (identity = 89%) to TSV-PA, a specific plasminogen activator from venom of T stejnegeri. Despite of the sequence similarity, jerdonobin-II was found devoid of plasminogen activating effect. Sequence alignment analysis suggested that the replacement of Lys(239) in TSV-PA to Gln(239) in jerdonobin-II might play an important role on their plasminogen activating activity difference. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This study was carried out to measure the effects of a supplementary multi enzyme on growth performance , survival rate and apparent protein digestibility of rainbow trout fed some diets containing different amounts of soy bean meal. Five exprimental diets with replacement of 25, 50, 75 and 100 percent of fish meal protein by soy bean meal protein were made and 0, 500 and 1000 ppm dosages of supplementary multi enzyme had used in each of them. By the means a diet with fish meal as the only source of protein has used as the control. So this study had 13 treatments. The trouts in 89.40±4.01 gr mean weight were stocked in 39 experimental fiberglass tanks in abundance of 30 fish per any tank. These specimens fed experimental diets for 8 weeks and ten of them in each tank fed same diets which added Cr2O3 to them for one more week to measure the apparent protein digestibility in them. The results shown that supplementary multi enzyme (Avizyme) which contains Protease , Amylase and Xylanase , caused increases in growth performance , survival rate and apparent protein digestibility in trouts which fed soybean meal. Also this study shown that using 1000 ppm of Avizyme in diets which containing soybean meal had the best results and the diet which contained 39 % soybean meal with this amount of enzymes, had no significant differences by the control in any of the studied factors.
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) is an important incretin hormone, which potentiates glucose-induced insulin secretion. Antihyperglycaemic actions of GIP provide significant potential in Type 11 diabetes therapy. However, inactivation of GIP by the enzyme dipeptidyl peptidase IV (DPP IV) and its consequent short circulating half-life limit its therapeutic use. Therefore two novel Tyr(1)-Modified analogues of GIP, N-Fmoc-GIP (where Fmoc is 9-fluorenylmethoxycarbonyl) and N-palmitate-GIP, were synthesized and tested for metabolic stability and biological activity. Both GIP analogues were resistant to degradation by DPP IV and human plasma. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, both analogues exhibited a 2-fold increase in cAMP-generating potency compared with native GIP (EC50 values of 9.4, 10.0 and 18.2 nM respectively). Using clonal BRIN-BD11 cells, both analogues demonstrated strong insulinotropic activity compared with native GIP (P <0.01 to P <0.001). In obese diabetic (ob/ob) mice, administration of N-Fmoc-GIP or N-palmitate-GIP (25 nmol/kg) together with glucose (18 mmol/kg) significantly reduced the peak 15 min glucose excursion (1.4- and 1.5-fold respectively; P <0.05 to P <0.01) compared with glucose alone. The area under the curve (AUC) for glucose was significantly lower after administration of either analogue compared with glucose administered alone or in combination with native GIP (1.5-fold; P <0.05). This was associated with a significantly greater AUC for insulin (2.1-fold; P <0.001) for both analogues compared with native GIP. A similar pattern of in vivo responsiveness was evident in lean control mice. These data indicate that novel N-terminal Tyr(1) modification of GIP with an Fmoc or palmitate group confers resistance to degradation by DPP IV in plasma, which is reflected by increased in vitro potency and greater insulinotropic and antihyperglycaemic activities in an animal model of Type 11 diabetes mellitus.
Resumo:
A molecular model for the P450 enzyme cytochrome P450 C17 (CYP17) is presented based on sequence alignments of multiple template structures and homology modeling. This enzyme plays a central role in the biosynthesis of testosterone and is emerging as a major target in prostate cancer, with the recently developed inhibitor abiraterone currently in advanced clinical trials. The model is described in detail, together with its validation, by providing structural explanations to available site-directed mutagenesis data. The CYP17 molecule in this model is in the form of a triangular prism, with an edge of similar to 55 angstrom and a thickness of similar to 37 angstrom. It is predominantly helical, comprising 13 alpha helices interspersed by six 3(10) helices and 11 beta-sheets. Multinanosecond molecular dynamics simulations in explicit solvent have been carried out, and principal components analysis has been used to reveal the details of dynamics around the active site. Coarse-grained methods have also been used to verify low-frequency motions, which have been correlated with active-site gating. The work also describes the results of docking synthetic inhibitors, including the drug abiraterone and the natural substrate pregnenolone, in the CYP17 active site together with molecular dynamics simulations on the complexes. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To characterize the importance of cellular Fas-associated death domain (FADD)–like interleukin 1ß-converting enzyme (FLICE) inhibitory protein (c-FLIP), a key regulator of caspase-8 (FLICE)–promoted apoptosis, in modulating the response of prostate cancer cells to androgen receptor (AR)–targeted therapy.
Experimental Design: c-FLIP expression was characterized by immunohistochemical analysis of prostatectomy tissue. The functional importance of c-FLIP to survival and modulating response to bicalutamide was studied by molecular and pharmacologic interventions.
Results: c-FLIP expression was increased in high-grade prostatic intraepithelial neoplasia and prostate cancer tissue relative to normal prostate epithelium (P < 0.001). Maximal c-FLIP expression was detected in castrate-resistant prostate cancer (CRPC; P < 0.001). In vitro, silencing of c-FLIP induced spontaneous apoptosis and increased 22Rv1 and LNCaP cell sensitivity to bicalutamide, determined by flow cytometry, PARP cleavage, and caspase activity assays. The histone deacetylase inhibitors (HDACi), droxinostat and SAHA, also downregulated c-FLIP expression, induced caspase-8- and caspase-3/7–mediated apoptosis, and increased apoptosis in bicalutamide-treated cells. Conversely, the elevated expression of c-FLIP detected in the CRPC cell line VCaP underpinned their insensitivity to bicalutamide and SAHA in vitro. However, knockdown of c-FLIP induced spontaneous apoptosis in VCaP cells, indicating its relevance to cell survival and therapeutic resistance.
Conclusion: c-FLIP reduces the efficacy of AR-targeted therapy and maintains the viability of prostate cancer cells. A combination of HDACi with androgen deprivation therapy may be effective in early-stage disease, using c-FLIP expression as a predictive biomarker of sensitivity. Direct targeting of c-FLIP, however, may be relevant to enhance the response of existing and novel therapeutics in CRPC. Clin Cancer Res; 18(14); 3822–33.
Resumo:
Adrenergic receptors (alpha 2, beta 2), plasma noradrenaline, heart rate and the pressor responsiveness to infused noradrenaline were examined in ten healthy male volunteers before and after 2 weeks of placebo or captopril therapy in a double blind cross-over study. No significant differences in these measurements were observed between the captopril and placebo treated groups. The study shows that in sodium replete normotensive subjects, long-term angiotensin converting enzyme inhibition does not lead to changes in adrenoceptor density. There is also no alteration in plasma noradrenaline levels nor in the pressor responsiveness to infused noradrenaline. These data suggest that the known interaction between the renin-angiotensin system and the sympathetic nervous system observed in animals is probably of little significance in man.
Resumo:
Laser accelerated proton beams have been proposed to be used in different research fields. A great interest has risen for the potential replacement of conventional accelerating machines with laser-based accelerators, and in particular for the development of new concepts of more compact and cheaper hadrontherapy centers. In this context the ELIMED (ELI MEDical applications) research project has been launched by INFN-LNS and ASCR-FZU researchers within the pan-European ELI-Beamlines facility framework. The ELIMED project aims to demonstrate the potential clinical applicability of optically accelerated proton beams and to realize a laser-accelerated ion transport beamline for multi-disciplinary user applications. In this framework the eye melanoma, as for instance the uveal melanoma normally treated with 62 MeV proton beams produced by standard accelerators, will be considered as a model system to demonstrate the potential clinical use of laser-driven protons in hadrontherapy, especially because of the limited constraints in terms of proton energy and irradiation geometry for this particular tumour treatment. Several challenges, starting from laser-target interaction and beam transport development up to dosimetry and radiobiology, need to be overcome in order to reach the ELIMED final goals. A crucial role will be played by the final design and realization of a transport beamline capable to provide ion beams with proper characteristics in terms of energy spectrum and angular distribution which will allow performing dosimetric tests and biological cell irradiation. A first prototype of the transport beamline has been already designed and other transport elements are under construction in order to perform a first experimental test with the TARANIS laser system by the end of 2013. A wide international collaboration among specialists of different disciplines like Physics, Biology, Chemistry, Medicine and medical doctors coming from Europe, Japan, and the US is growing up around the ELIMED project with the aim to work on the conceptual design, technical and experimental realization of this core beamline of the ELI Beamlines facility. © 2013 SPIE.
Resumo:
We report use of PEG-DSPE coated oxidized graphene nanoribbons (O-GNR-PEG-DSPE) as agent for delivery of anti-tumor drug Lucanthone (Luc) into Glioblastoma Multiformae (GBM) cells targeting base excision repair enzyme APE-1 (Apurinic endonuclease-1). Lucanthone, an endonuclease inhibitor of APE-1, was loaded onto O-GNR-PEG-DSPEs using a simple non-covalent method. We found its uptake by GBM cell line U251 exceeding 67% and 60% in APE-1-overexpressing U251, post 24 h. However, their uptake was ~ 38% and 29% by MCF-7 and rat glial progenitor cells (CG-4), respectively. TEM analysis of U251 showed large aggregates of O-GNR-PEG-DSPE in vesicles. Luc-O-GNR-PEG-DSPE was significantly toxic to U251 but showed little/no toxicity when exposed to MCF-7/CG-4 cells. This differential uptake effect can be exploited to use O-GNR-PEG-DSPEs as a vehicle for Luc delivery to GBM, while reducing nonspecific cytotoxicity to the surrounding healthy tissue. Cell death in U251 was necrotic, probably due to oxidative degradation of APE-1.
Graphical abstract
We used O-GNR-PEG-DSPE as a reliable, non-toxic vehicle for delivery of APE-1 inhibiting Lucanthone into GBM tumor cell lines. LUC-O-GNR-PEG-DSPE particles showed 60% or more uptake by CMV/U251 and A1-5/CMV/U251 where as the uptake by MCF7 and normal CG4 glial cells was much lower (38% and 29% respectively). Different concentrations of Luc (5–80 μM) loaded onto O-GNR-PEG-DSPE showed lower toxicity in the exposed cells compared to the free drug, due to possible slow release of the drug from this particle, which ensures minimum non-specific release of the drug from the particle once it is injected in vivo.
http://ars.els-cdn.com/content/image/1-s2.0-S1549963414004249-fx1.jpg
Resumo:
BACKGROUND: We proposed to exploit hypoxia-inducible factor (HIF)-1alpha overexpression in prostate tumours and use this transcriptional machinery to control the expression of the suicide gene cytosine deaminase (CD) through binding of HIF-1alpha to arrangements of hypoxia response elements. CD is a prodrug activation enzyme, which converts inactive 5-fluorocytosine to active 5-fluorouracil (5-FU), allowing selective killing of vector containing cells.
METHODS: We developed a pair of vectors, containing either five or eight copies of the hypoxia response element (HRE) isolated from the vascular endothelial growth factor (pH5VCD) or glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (pH8GCD) gene, respectively. The kinetics of the hypoxic induction of the vectors and sensitization effects were evaluated in 22Rv1 and DU145 cells in vitro.
RESULTS: The CD protein as selectively detected in lysates of transiently transfected 22Rv1 and DU145 cells following hypoxic exposure. This is the first evidence of GAPDH HREs being used to control a suicide gene therapy strategy. Detectable CD levels were sustained upon reoxygenation and prolonged hypoxic exposures. Hypoxia-induced chemoresistance to 5-FU was overcome in both cell lines treated with this suicide gene therapy approach. Hypoxic transfectants were sensitized to prodrug concentrations that were ten-fold lower than those that are clinically relevant. Moreover, the surviving fraction of reoxygenated transfectants could be further reduced with the concomitant delivery of clinically relevant single radiation doses.
CONCLUSIONS: This strategy thus has the potential to sensitize the hypoxic compartment of prostate tumours and improve the outcome of current therapies.
Resumo:
Tese de doutoramento, Farmácia (Bioquímica), Universidade de Lisboa, Faculdade de Farmácia, 2014