825 resultados para Enrico Fermi Atomic Power Plant (Mich.)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Physics and Math. TID-4500 (15th Ed.)"--Title page.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Earlier editions published under titles: Oil engine power plant handbook and Diesel power plant handbook.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"NUREG-0698."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"June 1976."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"YNCP-SMR-1."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"ILENR/RE-SP-87/03."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Henan. Luoyang. Xin'an Power Plant; Hts: 3 11/32 in. to 3 ft. 1 13/32 in.; bronze

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 1. The factory buildings / W. L. Case -- v. 8. The power plant / D. M. Myers. [c1920] -- v. 9. The mechanical equipment / J. W. Roe. [c1922]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"29 August 1989."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding, and controlling, the conditions under which calcite precipitates within geothermal energy production systems is a key step in maintaining production efficiency. In this study, I apply methods of bulk and clumped isotope thermometry to an operating geothermal energy facility in northern Nevada to see how those methods can better inform the facility owner, AltaRock Energy, Inc., about the occurrence of calcite scale in their power plant. I have taken water samples from five production wells, the combined generator effluent, shallow cold-water wells, monitoring wells, and surface water. I also collected calcite scale samples from within the production system. Water samples were analyzed for stable oxygen isotope composition (d18O). Calcite samples were analyzed for stable oxygen and carbon (d13C) composition, and clumped isotope composition (D47). With two exceptions, the water compositions are very similar, likely indicating common origin and a well-mixed hydrothermal system. The calcite samples are likewise similar to one another. Apparent temperatures calculated from d18O values of water and calcite are lower than those recorded for the system. Apparent temperatures calculated from D47 are several degrees higher than the recorded well temperatures. The lower temperatures from the bulk isotope data are consistent with temperatures that could be expected during a de-pressurization of the production system, which would cause boiling in the pipes, a reduction in system temperature, and rapid precipitation of calcite scale. However, the high apparent temperature indicated by the D47 data suggests that the calcite is depleted in clumped isotopes given the known temperature of the system, which is inconsistent with this hypothesis. This depletion could instead result from disequilibrium isotopic fractionation during the aforementioned boil events, which would make both the apparent d18O-based and D47-based temperatures unrepresentative of the actual water temperature. This research can help improve our understanding of how isotopic analyses can better inform us about the movement of water through geothermal systems of the past and how it now moves through modern systems. Increased understanding of water movement in these systems could potentially allow for more efficient utilization of geothermal energy as a renewable resource.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coal fired power generation will continue to provide energy to the world for the foreseeable future. However, this energy use is a significant contributor to increased atmospheric CO2 concentration and, hence, global warming. Capture and disposal Of CO2 has received increased R&D attention in the last decade as the technology promises to be the most cost effective for large scale reductions in CO2 emissions. This paper addresses CO2 transport via pipeline from capture site to disposal site, in terms of system optimization, energy efficiency and overall economics. Technically, CO2 can be transported through pipelines in the form of a gas, a supercritical. fluid or in the subcooled liquid state. Operationally, most CO2 pipelines used for enhanced oil recovery transport CO2 as a supercritical fluid. In this paper, supercritical fluid and subcooled liquid transport are examined and compared, including their impacts on energy efficiency and cost. Using a commercially available process simulator, ASPEN PLUS 10.1, the results show that subcooled liquid transport maximizes the energy efficiency and minimizes the Cost Of CO2 transport over long distances under both isothermal and adiabatic conditions. Pipeline transport of subcooled liquid CO2 can be ideally used in areas of cold climate or by burying and insulating the pipeline. In very warm climates, periodic refrigeration to cool the CO2 below its critical point of 31.1 degrees C, may prove economical. Simulations have been used to determine the maximum safe pipeline distances to subsequent booster stations as a function of inlet pressure, environmental temperature and ground level heat flux conditions. (c) 2005 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental and theoretical study of the transport of mineral wool fibre agglomerates in nuclear power plant containment sumps is being performed. A racetrack channel was devised to provide data for the validation of numerical models, which are intended to model the transport of fibre agglomerates. The racetrack channel provides near uniform and steady conditions that lead to either the sedimentation or suspension of the agglomerates. Various experimental techniques were used to determine the velocity conditions and the distribution of the fibre agglomerates in the channel. The fibre agglomerates are modelled as fluid particles in the Eulerian reference frame. Simulations of pure sedimentation of a known mass and volume of agglomerations show that the transport of the fibre agglomerates can be replicated. The suspension of the fibres is also replicated in the simulations; however, the definition of the fibre agglomerate phase is strongly dependent on the selected density and diameter. Detailed information on the morphology of the fibre agglomerates is lacking for the suspension conditions, as the fibre agglomerates may undergo breakage and erosion. Therefore, ongoing work, which is described here, is being pursued to improve the experimental characterisation of the suspended transport of the fibre agglomerates.