965 resultados para Energy in agriculture
Resumo:
This paper presents a novel vehicle to vehicle energy exchange market (V2VEE) between electric vehicles (EVs) for decreasing the energy cost to be paid by some users whose EVs must be recharged during the day to fulfil their daily scheduled trips and also reducing the impact of charging on the electric grid. EVs with excess of energy in their batteries can transfer this energy among other EVs which need charge during their daily trips. These second type of owners can buy the energy directly to the electric grid or they can buy the energy from other EV at lower price. An aggregator is responsible for collecting all information among vehicles located in the same area at the same time and make possible this energy transfer.
Resumo:
Wheat (Triticum aestivum L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide about two-thirds of all energy in human diets, and four major cropping systems in which these cereals are grown represent the foundation of human food supply. Yield per unit time and land has increased markedly during the past 30 years in these systems, a result of intensified crop management involving improved germplasm, greater inputs of fertilizer, production of two or more crops per year on the same piece of land, and irrigation. Meeting future food demand while minimizing expansion of cultivated area primarily will depend on continued intensification of these same four systems. The manner in which further intensification is achieved, however, will differ markedly from the past because the exploitable gap between average farm yields and genetic yield potential is closing. At present, the rate of increase in yield potential is much less than the expected increase in demand. Hence, average farm yields must reach 70–80% of the yield potential ceiling within 30 years in each of these major cereal systems. Achieving consistent production at these high levels without causing environmental damage requires improvements in soil quality and precise management of all production factors in time and space. The scope of the scientific challenge related to these objectives is discussed. It is concluded that major scientific breakthroughs must occur in basic plant physiology, ecophysiology, agroecology, and soil science to achieve the ecological intensification that is needed to meet the expected increase in food demand.
Resumo:
Well-functioning factor markets are an essential condition for the competitiveness and sustainable development of agriculture and rural areas. At the same time, the functioning of the factor markets themselves is influenced by changes in agriculture and the rural economy. Such changes can be the result of progress in technology, globalisation and European market integration, changing consumer preferences and shifts in policy. Changes in the Common Agricultural Policy (CAP) over the last decade have particularly affected the rural factor markets. This book analyses the functioning of factor markets for agriculture in the EU-27 and several candidate countries. Written by leading academics and policy analysts from various European countries, these chapters compare the different markets, their institutional framework, their impact on agricultural development and structural change, and their interaction with the CAP. As the first comparative study to cover rural factor markets in Europe, highlighting their diversity − despite the Common Agricultural Policy and an integrated single market − Land, Labour & Capital Markets in European Agriculture provides a timely and valuable source of information at a time of further CAP reform and the continuing transformation of the EU's rural areas.
Resumo:
For many years the European Union has been improving the efficient use of energy resources and yet the demand for energy in the EU continues to increase. When Europe belonged to one of the world’s key energy markets with relatively easy access to energy resources, growing energy needs were not seen as a source of concern. Today, however, as the competition for energy resources is intensifying and the global position of the EU energy market is being challenged by growing economies in the developing countries, above all China and India, the EU needs to adopt bold policies to guarantee the sustainable supply of energy. This report argues the EU needs to develop a fully-fledged external energy policy; i.e. a common, coherent, strategic approach that build bridges between the interests and needs of the EU integrated energy market on the one hand and supplier countries on the other. The EU’s external energy policy has two main objectives. The first one is to ensure a sustainable, stable and cost-effective energy supply. The second is to promote energy market integration and regulatory convergence with neighbouring countries (often but not always this supports the achievement of the first objective). However, in order to improve its effectiveness, the EU’s external energy policy needs to be seen in a broader economic and political context. Any progress in energy cooperation with third countries is contingent upon the EU’s general stance and offer to those countries.
Resumo:
Progress in agriculture and food issues in the TTIP talks will largely be determined by the level of ambition in the negotiations as a whole. If ambitions are modest, a low-level agreement could probably be reached that includes some limited commitments on agricultural market access and food regulations. These could include promises of mutual support in the area of opening up agricultural markets through the WTO and of further Transatlantic cooperation in trying to resolve conflicts over food regulations. Bolder ambitions would allow more scope for tackling the difficult problems, though at the cost of time. It would be unfortunate if the opportunity were not taken to make some significant progress in removing some longstanding irritants in the area of agricultural policy and food regulations: this is where the economic gains are likely to be significant and the spill-overs useful. This paper argues the case that it is worthwhile making the effort to secure a constructive and imaginative agreement on agriculture and food regulations in the TTIP. A fairly detailed suggestive list of potential sub-deals in agro-food, supported by the analysis in the paper, is the most concrete one of a series of policy conclusions
Resumo:
Mode of access: Internet.
Resumo:
Australia is unique in terms of its geography, population distribution, and energy sources. It has an abundance of fossil fuel in the form of coal, natural gas, coal seam methane (CSM), oil, and a variety renewable energy sources that are under development. Unfortunately, most of the natural gas is located so far away from the main centres of population that it is more economic to ship the energy as LNG to neighboring countries. Electricity generation is the largest consumer of energy in Australia and accounts for around 50% of greenhouse gas emissions as 84% of electricity is produced from coal. Unless these emissions are curbed, there is a risk of increasing temperatures throughout the country and associated climatic instability. To address this, research is underway to develop coal gasification and processes for the capture and sequestration Of CO2. Alternative transport fuels such as biodiesel are being introduced to help reduce emissions from vehicles. The future role of hydrogen is being addressed in a national study commissioned this year by the federal government. Work at the University of Queensland is also addressing full-cycle analysis of hydrogen production, transport, storage, and utilization for both stationary and transport applications. There is a modest but growing amount of university research in fuel cells in Australia, and an increasing interest from industry. Ceramic Fuel Cells Ltd. (CFCL) has a leading position in planar solid oxide fuel cells (SOFCs) technology, which is being developed for a variety of applications, and next year Perth in Western Australia is hosting a trial of buses powered by proton-exchange fuel cells. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
After thirty years of vacillation, the Tanzanian government has made a firm decision to Swahilize its secondary education system. It has also embarked on an ambitious economic and social development programme (Vision 2025) to transform its peasant society into a modern agricultural community. However, there is a faction in Tanzania opposed to Kiswahili as the medium of education. Already many members of the middle and upper class their children to English medium primary schools to avoid the Kiswahili medium public schools and to prepare their children for the English medium secondary system presently in place. Within the education system, particularly at university level, there is a desire to maintain English as the medium of education. English is seen to provide access to the international scientific community, to cutting edge technology and to the global economy. My interest in this conflict of interests stems from several years' experience teaching English to students at Sokoine University of Agriculture. Students specialise in agriculture and are expected to work with the peasant population on graduation. The students experience difficulties studying in English and then find their Kiswahili skills insufficient to explain to farmers the new techniques and technologies that they have studied in English. They are hampered by a complex triglossic situation in which they use their mother tongue with family and friends, Kiswahili, the national language for early education and most public communication within Tanzania, and English for advanced studies. My aim in this thesis was - to study the language policy in Tanzania and see how it is understood and implemented; - to examine the attitudes towards the various languages and their various roles; - to investigate actual language behaviour in Tanzanian higher education. My conclusion is that the dysfunctionality of the present study has to be addressed. Diglossic public life in Tanzania has to be accommodated. The only solution appears to be a compromise, namely a bilingual education system which supports from all cases of society by using Kiswahili, together with an early introduction of English and its promotion as a privileged foreign language, so that Tanzania can continue to develop internally through Kiswahili and at the same time retain access to the globalising world through the medium of English.
Resumo:
Energy consumption has been a key concern of data gathering in wireless sensor networks. Previous research works show that modulation scaling is an efficient technique to reduce energy consumption. However, such technique will also impact on both packet delivery latency and packet loss, therefore, may result in adverse effects on the qualities of applications. In this paper, we study the problem of modulation scaling and energy-optimization. A mathematical model is proposed to analyze the impact of modulation scaling on the overall energy consumption, end-to-end mean delivery latency and mean packet loss rate. A centralized optimal management mechanism is developed based on the model, which adaptively adjusts the modulation levels to minimize energy consumption while ensuring the QoS for data gathering. Experimental results show that the management mechanism saves significant energy in all the investigated scenarios. Some valuable results are also observed in the experiments. © 2004 IEEE.
Resumo:
Summary: Renewable energy is one of the main pillars of sustainable development, especially in developing economies. Increasing energy demand and the limitation of fossil fuel reserves make the use of renewable energy essential for sustainable development. Wind energy is considered to be one of the most important resources of renewable energy. In North African countries, such as Egypt, wind energy has an enormous potential; however, it faces quite a number of technical challenges related to the performance of wind turbines in the Saharan environment. Seasonal sand storms affect the performance of wind turbines in many ways, one of which is increasing the wind turbine aerodynamic resistance through the increase of blade surface roughness. The power loss because of blade surface deterioration is significant in wind turbines. The surface roughness of wind turbine blades deteriorates because of several environmental conditions such as ice or sand. This paper is the first review on the topic of surface roughness effects on the performance of horizontal-axis wind turbines. The review covers the numerical simulation and experimental studies as well as discussing the present research trends to develop a roadmap for better understanding and improvement of wind turbine performance in deleterious environments.
Resumo:
We study the statistical and dynamical behavior of turbulent Kelvin waves propagating on quantized vortices in superfluids and address the controversy concerning the energy spectrum that is associated with these excitations. Finding the correct energy spectrum is important because Kelvin waves play a major role in the dissipation of energy in superfluid turbulence at near-zero temperatures. In this paper, we show analytically that the solution proposed by [L’vov and Nazarenko, JETP Lett. 91, 428 (2010)] enjoys existence, uniqueness, and regularity of the prefactor. Furthermore, we present numerical results of the dynamical equation that describes to leading order the nonlocal regime of the Kelvin-wave dynamics. We compare our findings with the analytical results from the proposed local and nonlocal theories for Kelvin-wave dynamics and show an agreement with the nonlocal predictions. Accordingly, the spectrum proposed by L’vov and Nazarenko should be used in future theories of quantum turbulence. Finally, for weaker wave forcing we observe an intermittent behavior of the wave spectrum with a fluctuating dissipative scale, which we interpreted as a finite-size effect characteristic of mesoscopic wave turbulence.
Resumo:
In this study wave propagation, dispersion relations, and energy relations for linear elastic periodic systems are analyzed. In particular, the dispersion relations for monoatomic chain of infinite dimension are obtained analytically by writing the Block-type wave equation for a unit cell in order to capture the dynamic behavior for chains under prescribed vibration. By comparing the discretized model (mass-spring chain) with the solid bar system, the nonlinearity of the dispersion relation for chain indicates that the periodic lattice is dispersive in contrast to the continuous rod, which is non dispersive. Further investigations have been performed considering one-dimensional diatomic linear elastic mass-spring chain. The dispersion relations, energy velocity, and group velocity have been derived. At certain range of frequencies harmonic plane waves do not propagate in contrast with monoatomic chain. Also, since the diatomic chain considered is a linear elastic chain, both of the energy velocity and the group velocity are identical. As long as the linear elastic condition is considered the results show zero flux condition without residual energy. In addition, this paper shows that the diatomic chain dispersion relations are independent on the unit cell scheme. Finally, an extension for the study covers the dispersion and energy relations for 2D- grid system. The 2x2 grid system show a periodicity of the dispersion surface in the wavenumber domain. In addition, the symmetry of the surface can be exploited to identify an Irreducible Brillouin Zone (IBZ). Compact representations of the dispersion properties of multidimensional periodic systems are obtained by plotting frequency as the wave vector’s components vary along the boundary of the IBZ, which leads to a widely accepted and effective visualization of bandgaps and overall dispersion properties.
Resumo:
Technological capability (TC) plays a strategic role in the competitive advantage of not only individual corporate entities but also entire industries. This paper investigates the crucial factors that affect technological capability development by Energy Service Companies (ESCOs) in China. It identifies how differently sized ESCOs make progress in developing TCs. Through looking at the successes achieved by developed countries in the field of energy conservation, ESCOs are able to improve energy efficiency and reduce emissions and are deemed to provide an effective means of conserving energy in China. Existing literature indicates that limited TC levels of are one of the crucial barriers facing Chinese ESCOs. Through investigating three different sizes of Chinese ESCO - small, medium-sized and large - this paper provides a framework to present the idea that Chinese ESCOs' TC development is affected by four key internal and external capabilities: management capability, investment capability, innovation capability and linkage capability. Through comparative analysis, the paper establishes that small and medium-sized private ESCOs are mainly affected by investment and linkage capabilities. Large state-owned ESCOs are mainly affected by innovation and management capability. In addition, all three types of ESCO exhibit a strong desire to develop their technological capability, but small and medium-sized ESCOs exhibit a stronger desire to conduct research and development (R&D) than large ESCOs, whilst large ESCOs prefer to increase their technical reserves through acquisition. This paper identifies factors that affect Chinese ESCOs' TC, but it does intend to address the problem of how to reduce the negative effects of limited TC or the question of how to improve the TC development of Chinese ESCOs effectively. This paper contributes to the field of TC development in the ESCO industry.
Resumo:
The principal aim of this paper is to examine the criteria assisting in the selection of biomass for energy generation in Brazil. To reach the aim, this paper adopts case study and survey research methods to collect information from four biomass energy case companies and solicits opinions from experts. The data gathered are analysed in line with a wide range of related data, including selection criteria for biomass and its importance, energy policies in Brazil, availability of biomass feedstock in Brazil and its characteristics, as well as status quo of biomass-based energy in Brazil. The findings of the paper demonstrate that there are ten main criteria in biomass selection for energy generation in Brazil. They comprise geographical conditions, availability of biomass feedstock, demand satisfaction, feedstock costs and oil prices, energy content of biomass feedstock, business and economic growth, CO2 emissions of biomass end-products, effects on soil, water and biodiversity, job creation and local community support, as well as conversion technologies. Furthermore, the research also found that these main criteria cannot be grouped on the basis of sustainability criteria, nor ranked by their importance as there is correlation between each criterion such as a cause and effect relationship, as well as some overlapping areas. Consequently, this means that when selecting biomass more comprehensive consideration is advisable.