892 resultados para Energy consumption -- Computer simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Health promotion in hospital environments can be improved using the most recent information and communication technologies. The Internet connectivity to small sensor nodes carried by patients allows remote access to their bio-signals. To promote these features the healthcare wireless sensor networks (HWSN) are used. In these networks mobility support is a key issue in order to keep patients under realtime monitoring even when they move around. To keep sensors connected to the network, they should change their access points of attachment when patients move to a new coverage area along an infirmary. This process, called handover, is responsible for continuous network connectivity to the sensors. This paper presents a detailed performance evaluation study considering three handover mechanisms for healthcare scenarios (Hand4MAC, RSSI-based, and Backbone-based). The study was performed by simulation using several scenarios with different number of sensors and different moving velocities of sensor nodes. The results show that Hand4MAC is the best solution to guarantee almost continuous connectivity to sensor nodes with less energy consumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O crescente aumento do consumo energético das sociedades desenvolvidas e emergentes, motivado pelo progresso económico e social, tem induzido a procura de alternativas focalizadas nas energias renováveis, que possam contribuir para assegurar o fornecimento de energia sem agravar o consumo de combustíveis fósseis e a emissão de gases com efeito de estufa. Nesse sentido, a produção de energia eléctrica a partir do gás metano resultante da estabilização anaeróbia de efluentes tem vindo a ser estudada e praticada desde finais do século XIX, tendo assumido maior expressão a partir dos anos 70 do século XX, na sequência das primeiras crises petrolíferas. As instalações agropecuárias reúnem dois fatores chave para o sucesso do aproveitamento energético do biogás produzido no tratamento dos efluentes: por um lado, produzem matéria-prima com potencial energético – dejeto animal com um potencial enorme de criação de biogás quando procedido de tratamento anaeróbio - e, por outro, necessitam de energia eléctrica para o funcionamento dos equipamentos electromecânicos e de calor para a manutenção das instalações. A valorização energética do biogás produzido na estabilização anaeróbia dos efluentes agro-pecuários, para além de permitir obter um retorno financeiro, que contribui para o equilíbrio dos custos de investimento e de exploração, contribui igualmente para a redução das emissões de gases com efeito de estufa, como o dióxido de carbono e o metano, e para a segurança de abastecimento energético à instalação, na medida em que assegura a alimentação de energia eléctrica em caso de falha no fornecimento pela rede nacional. A presente dissertação apresenta um contributo para estudos a desenvolver por proprietários de agropecuárias, cooperativas regionais do setor da agropecuária, empresas de projecto e estudantes de Engenharia, constituído por uma compilação da informação mais relevante associada à estabilização anaeróbia de efluentes e à valorização energética do biogás produzido. Com base em informação referente ao número real de animais existentes em Portugal, este trabalho pretende fazer ver a essas entidades que o aproveitamento energético do biogás é viável e útil para o país. Com a criação de uma aplicação informática de análise económica de investimento, provar que o investimento em pequenas propriedades, com apenas 80 cabeças normais, pode obter um retorno financeiro razoável, com um prazo de recuperação do investimento bastante baixo, aproveitando um recurso que caso contrário será desperdiçado e poluirá o ambiente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente, Perfil de Gestão e Sistemas Ambientais

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The superfluous consumption of energy is faced by the modern society as a Socio-Economical and Environmental problem of the present days. This situation is worsening given that it is becoming clear that the tendency is to increase energy price every year. It is also noticeable that people, not necessarily proficient in technology, are not able to know where savings can be achieved, due to the absence of accessible awareness mechanisms. One of the home user concerns is to balance the need of reducing energy consumption, while producing the same activity with all the comfort and work efficiency. The common techniques to reduce the consumption are to use a less wasteful equipment, altering the equipment program to a more economical one or disconnecting appliances that are not necessary at the moment. However, there is no direct feedback from this performed actions, which leads to the situation where the user is not aware of the influence that these techniques have in the electrical bill. With the intension to give some control over the home consumption, Energy Management Systems (EMS) were developed. These systems allow the access to the consumption information and help understanding the energy waste. However, some studies have proven that these systems have a clear mismatch between the information that is presented and the one the user finds useful for his daily life, leading to demotivation of use. In order to create a solution more oriented towards the user’s demands, a specially tailored language (DSL) was implemented. This solution allows the user to acquire the information he considers useful, through the construction of questions about his energy consumption. The development of this language, following the Model Driven Development (MDD) approach, took into consideration the ideas of facility managers and home users in the phases of design and validation. These opinions were gathered through meetings with experts and a survey, which was conducted to the purpose of collecting statistics about what home users want to know.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reduction of greenhouse gas emissions is one of the big global challenges for the next decades due to its severe impact on the atmosphere that leads to a change in the climate and other environmental factors. One of the main sources of greenhouse gas is energy consumption, therefore a number of initiatives and calls for awareness and sustainability in energy use are issued among different types of institutional and organizations. The European Council adopted in 2007 energy and climate change objectives for 20% improvement until 2020. All European countries are required to use energy with more efficiency. Several steps could be conducted for energy reduction: understanding the buildings behavior through time, revealing the factors that influence the consumption, applying the right measurement for reduction and sustainability, visualizing the hidden connection between our daily habits impacts on the natural world and promoting to more sustainable life. Researchers have suggested that feedback visualization can effectively encourage conservation with energy reduction rate of 18%. Furthermore, researchers have contributed to the identification process of a set of factors which are very likely to influence consumption. Such as occupancy level, occupants behavior, environmental conditions, building thermal envelope, climate zones, etc. Nowadays, the amount of energy consumption at the university campuses are huge and it needs great effort to meet the reduction requested by European Council as well as the cost reduction. Thus, the present study was performed on the university buildings as a use case to: a. Investigate the most dynamic influence factors on energy consumption in campus; b. Implement prediction model for electricity consumption using different techniques, such as the traditional regression way and the alternative machine learning techniques; and c. Assist energy management by providing a real time energy feedback and visualization in campus for more awareness and better decision making. This methodology is implemented to the use case of University Jaume I (UJI), located in Castellon, Spain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-Band Full-DupleX (IB-FDX) is defined as the ability for nodes to transmit and receive signals simultaneously on the same channel. Conventional digital wireless networks do not implement it, since a node’s own transmission signal causes interference to the signal it is trying to receive. However, recent studies attempt to overcome this obstacle, since it can potentially double the spectral efficiency of current wireless networks. Different mechanisms exist today that are able to reduce a significant part of the Self- Interference (SI), although specially tuned Medium Access Control (MAC) protocols are required to optimize its use. One of IB-FDX’s biggest problems is that the nodes’ interference range is extended, meaning the unusable space for other transmissions and receptions is broader. This dissertation proposes using MultiPacket Reception (MPR) to address this issue and adapts an already existing Single-Carrier with Frequency-Domain Equalization (SC-FDE) receiver to IB-FDX. The performance analysis suggests that MPR and IB-FDX have a strong synergy and are able to achieve higher data rates, when used together. Using analytical models, the optimal transmission patterns and transmission power were identified, which maximize the channel capacity with the minimal energy consumption. This was used to define a new MAC protocol, named Full-duplex Multipacket reception Medium Access Control (FM-MAC). FM-MAC was designed for a single-hop cellular infrastructure, where the Access Point (AP) and the terminals implement both IB-FDX and MPR. It divides the coverage range of the AP into a closer Full-DupleX (FDX) zone and a farther Half-DupleX (HDX) zone and adds a tunable fairness mechanism to avoid terminal starvation. Simulation results show that this protocol provides efficient support for both HDX and FDX terminals, maximizing its capacity when more FDX terminals are used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project the direct rebound effect for the electricity demand in Portugal. While we find evidence of such an effect, the estimations also reflect the institutional arrangement that has characterized the electricity market in the country. Also, issues related to energy efficiency promotion are addressed in general putting into context the case study developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The considerable amount of energy consumed on Earth is a major cause for not achieving sustainable development. Buildings are responsible for the highest worldwide energy consumption, nearly 40%. Strong efforts have been made in what concerns the reduction of buildings operational energy (heating, hot water, ventilation, electricity), since operational energy is so far the highest energy component in a building life cycle. However, as operational energy is being reduced the embodied energy increases. One of the building elements responsible for higher embodied energy consumption is the building structural system. Therefore, the present work is going to study part of embodied energy (initial embodied energy) in building structures using a life cycle assessment methodology, in order to contribute for a greater understanding of embodied energy in buildings structural systems. Initial embodied energy is estimated for a building structure by varying the span and the structural material type. The results are analysed and compared for different stages, and some conclusions are drawn. At the end of this work it was possible to conclude that the building span does not have considerable influence in embodied energy consumption of building structures. However, the structural material type has influence in the overall energetic performance. In fact, with this research it was possible that building structure that requires more initial embodied energy is the steel structure; then the glued laminated timber structure; and finally the concrete structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado em Engenharia Informática

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The building sector is one of the Europeâ s main energy consumer, making buildings an important target for a wiser energy use, improving indoor comfort conditions and reducing the energy consumption. To achieve the European Union targets for energy consumption and carbon reductions it is crucial to act in new, but also in existing buildings, which constitute the majority of the building stock. In existing buildings, the significant improvement of their efficiency requires important investments. Therefore, costs are a major concern in the decision making process and the analysis of the cost effectiveness of the interventions is an important path in the guidance for the selection of the different renovation scenarios. The Portuguese thermal legislation considers the simple payback method for the calculations of the time for the return of the investment. However, this method does not take into consideration inflation, cash flows and cost of capital, as well as the future costs of energy and the building elements lifetime as it happens in a life cycle cost analysis. In order to understand the impact of the economic analysis method used in the choice of the renovation measures, a case study has been analysed using simple payback calculations and life cycle costs analysis. Overall results show that less far-reaching renovation measures are indicated when using the simple payback calculations which may be leading to solutions less cost-effective in a long run perspective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Construction sector is one of the major responsible for energy consumption and carbon emissions and renovation of existing buildings plays an important role in the actions to mitigate climate changes. Present work is based on the methodology developed in IEA Annex 56, allowing identifying cost optimal and cost effective renovation scenarios improving the energy performance. The analysed case study is a residential neighbourhood of the municipality of Gaia in Portugal. The analysis compares a reference renovation scenario (without improving the energy performance of the building) with a series of alternative renovation scenarios, including the one that is being implemented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building sector has become an important target for carbon emissions reduction, energy consumption and resources depletion. Due to low rates of replacement of the existing buildings, their low energy performances are a major concern. Most of the current regulations are focused on new buildings and do not account with the several technical, functional and economic constraints that have to be faced in the renovation of existing buildings. Thus, a new methodology is proposed to be used in the decision making process for energy related building renovation, allowing finding a cost-effective balance between energy consumption, carbon emissions and overall added value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores