916 resultados para Endometrial cavity
Resumo:
A half-cavity using a multilayer mirror has been set up close to the end of a large gain germanium-target system. An unambiguous saturation behaviour of the 232 angstrom and 236 angstrom lines has been observed. The role of the cavity mirror in this result is discussed. Suggestions are made for practical applications of an XUV laser in this wavelength range.
Resumo:
We compare the efficiencies of two optical cooling schemes, where a single particle is either inside or outside an optical cavity, under experimentally-realisable conditions. We evaluate the cooling forces using the general solution of a transfer matrix method for a moving scatterer inside a general one-dimensional system composed of immobile optical elements. Assuming the same atomic saturation parameter, we find that the two cooling schemes provide cooling forces and equilibrium temperatures of comparable magnitude.
Resumo:
We investigate optomechanical forces on a nearly lossless scatterer, such as an atom pumped far off-resonance or amicromirror, inside an optical ring cavity. Our model introduces two additional features to the cavity: an isolator is used to prevent circulation and resonant enhancement of the pump laser field and thus to avoid saturation of or damage to the scatterer, and an optical amplifier is used to enhance the effective Q-factor of the counterpropagating mode and thus to increase the velocity-dependent forces by amplifying the back-scattered light. We calculate friction forces, momentum diffusion, and steady-state temperatures to demonstrate the advantages of the proposed setup.
Resumo:
This paper describes an investigation of map width enhancement and a detailed analysis of the inducer flow field due to various bleed slot configurations and vanes in the annular cavity of a turbocharger centrifugal compressor. The compressor under investigation is used in a turbocharger application for a heavy duty diesel engine of approximately 400 hp. This investigation has been undertaken using a computational fluid dynamics (CFD) model of the full compressor stage, which includes a manual multiblock-structured grid generation method. The influence of the bleed slot flow on the inducer flow field at a range of operating conditions has been analyzed, highlighting the improvement in surge and choked flow capability. The impact of the bleed slot geometry variations and the inclusion of cavity vanes on the inlet incidence angle have been studied in detail by considering the swirl component introduced at the leading edge by the recirculating flow through the slot. Further, the overall stage efficiency and the nonuniform flow field at the inducer inlet have been also analyzed. The analysis revealed that increasing the slot width has increased the map width by about 17%. However, it has a small impact on the efficiency, due to the frictional and mixing losses. Moreover, adding vanes in the cavity improved the pressure ratio and compressor performance noticeably. A detail analysis of the compressor with cavity vanes has also been presented.
Resumo:
Placing metallic nanoparticles inside cavities, rather than in dimers, greatly improves their plasmonic response. Such particle-in-cavity (PIC) hybrid architectures are shown to produce extremely strong field enhancement at the particle cavity junctions, arising from the cascaded focusing of large optical cross sections into small gaps. These simply constructed PIC structures produce the strongest field enhancement for coupled nanoparticles, up to 90% stronger than for a dimer. The coupling is found to follow a universal power law with particle surface separation, both for field enhancements and resonant wavelength shifts. Significantly enhanced Raman signals are experimentally observed for molecules adsorbed in such PIC structures, in quantitive agreement with theoretical calculations. PIC architectures may have important implications in many applications, such as reliable single molecule sensing and light harvesting in plasmonic photovoltaic devices.
Resumo:
We investigate a hitherto largely unexplored regime of cavity quantum electrodynamics in which a highly-reflective element positioned between the end-mirrors of a typical Fabry--P\'erot resonator strongly modifies the cavity response function, such that two longitudinal modes with different spatial parity are brought close to frequency degeneracy. We examine applications of this generic `optical coalescence' phenomenon for the generation of enhanced photon--phonon nonlinearities in optomechanics and atom--photon nonlinearities in cavity quantum electrodynamics with strongly-coupled emitters.
Resumo:
In this paper we investigate the azimuthal pattern symmetry of an Archimedean spiral antenna which is designed to operate over the frequency range 3-10 GHz. The performance of the spiral in free space is compared with a structure that is backed by a perfect electric conductor with a separation distance of ?/4 at the operating frequencies. The latter arrangement exhibits a higher gain, however it is observed that the radiation patterns are less symmetrical about boresight and this performance degradation increases with frequency. The predicted 3 dB beamwidth difference is shown to vary between 14° (3 GHz) and 51° (10 GHz). An improved antenna design is described which reduces the pattern asymmetry to ˜ 2° at 10 GHz. The reduction in modal contamination is obtained by inserting slots carefully arranged in a radial pattern to disrupt the surface currents that flow on the ground plane of the antenna
Resumo:
Natural convection heat transfer from a heat generating horizontal cylinder enclosed in a square cavity, where a temperature difference exists across its vertical walls has been experimentally investigated for the range 2×104
Resumo:
Endometrial cancer risk has been directly associated with glycemic load. However, few studies have investigated this link, and the etiological role of specific dietary carbohydrate components remains unclear. Our aim was to investigate associations of carbohydrate intake, glycemic index, and glycemic load with endometrial cancer risk in the US Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Recruitment took place in 1993-2001. Over a median of 9.0 years of follow-up through 2009, 386 women developed endometrial cancer among 36,115 considered in the analysis. Dietary intakes were assessed using a 124-item diet history questionnaire. Cox proportional hazards models were applied to calculate hazard ratios and 95% confidence intervals. Significant inverse associations were detected between endometrial cancer risk and total available carbohydrate intake (hazard ratio (HR) = 0.66, 95% confidence interval (CI): 0.49, 0.90), total sugars intake (HR = 0.71, 95% CI: 0.52, 0.96), and glycemic load (HR = 0.63, 95% CI: 0.46, 0.84) when women in the highest quartile of intake were compared with those in the lowest. These inverse associations were strongest among overweight and obese women. No associations with endometrial cancer risk were observed for glycemic index or dietary fiber. Our findings contrast with previous evidence and suggest that high carbohydrate intakes and glycemic loads are protective against endometrial cancer development. Further clarification of these associations is warranted.