953 resultados para Emoff, Ron: Recollecting from the past
Resumo:
Benthic foraminiferal carbon isotope records from a suite of drill sites in the North Atlantic are used to trace variations in the relative strengths of Lower North Atlantic Deep Water (LNADW), Upper North Atlantic Deep Water (UNADW), and Southern Ocean Water (SOW) over the past 1 Myr. During glacial intervals, significant increases in intermediate-to-deep delta13C gradients (commonly reaching >1.2?) are consistent with changes in deep water circulation and associated chemical stratification. Bathymetric delta13C gradients covary with benthic foraminiferal delta18O and covary inversely with Vostok CO2, in agreement with chemical stratification as a driver of atmospheric CO2 changes. Three deep circulation indices based on delta13C show a phasing similar to North Atlantic sea surface temperatures, consistent with a Northern Hemisphere control of NADW/SOW variations. However, lags in the precession band indicate that factors other than deep water circulation control ice volume variations at least in this band.
Resumo:
Late Weichselian and Holocene dinoflagellate cyst assemblages have been investigated at two stations situated close to the modern Polar Front at the continental margin oft East Greenland. Both the concentrations of dinoflagelate cysts and the assemblage composition reflect changes in the surface water conditions, occurring in distinct steps during the past 15,000 years. Low concentrations of dinoflagellate cysts during Termination Ia suggest harsh environmental conditions, most probably caused by an extensive sea-ice cover and/or a high influx of low salinity meltwater. A surface water warming was recorded from 13,000 - 12,000 years BP, related to the inflow of warmer water trom the North Atlantic into the western Norwegian-Greenland Sea. The interval between Terminations la and Ib was characterized by a strong seasonality with an extensive sea-ice cover in winter and relatively warm surface waters in summer. At the transition to the Holocene, a reorganisation of the hydrography resulted in surface water conditions characteristic for the Holocene with three well-defined major water masses and oceanographic fronts The modern water mass conditions at both stations were established at the end of Termination Ib, around 6,400 to 6,800 years BP. In general, the influence of colder surface waters was more pronounced at the location off Scoresby Sund throughout the Holocene. Arctic water had the strongest influence at both stations in the middle Holocene. A progressive cooling with an increase in sea-ice cover is time-transgressivelyrecorded at both stations during the Holocene, indicating that the Polar Front moved to its present position or that branches of the zonal currents expanded from the East Greenland shell eastward during tlie last 3,000 years.
Resumo:
Application of the 230Th normalization method to estimate sediment burial fluxes in six cores from the eastern equatorial Pacific (EEP) reveals that bulk sediment and organic carbon fluxes display a coherent regional pattern during the Holocene that is consistent with modern oceanographic conditions, in contrast with estimates of bulk mass accumulation rates (MARs) derived from core chronologies. Two nearby sites (less than 10 km apart), which have different MARs, show nearly identical 230Th-normalized bulk fluxes. Focusing factors derived from the 230Th data at the foot of the Carnegie Ridge in the Panama Basin are >2 in the Holocene, implying that lateral sediment addition is significant in this part of the basin. New geochemical data and existing literature provide evidence for a hydrothermal source of sediment in the southern part of the Panama Basin and for downslope transport from the top of the Carnegie Ridge. The compilation of core records suggests that sediment focusing is spatially and temporally variable in the EEP. During oxygen isotope stage 2 (OIS 2, from 13-27 ka BP), focusing appears even higher compared to the Holocene at most sites, similar to earlier findings in the eastern and central equatorial Pacific. The magnitude of the glacial increase in focusing factors, however, is strongly dependent on the accuracy of age models. We offer two possible explanations for the increase in glacial focusing compared to the Holocene. The first one is that the apparent increase in lateral sediment redistribution is partly or even largely an artifact of insufficient age control in the EEP, while the second explanation, which assumes that the observed increase is real, involves enhanced deep sea tidal current flow during periods of low sea level stand.
Resumo:
Estimates of summer sea surface temperatures (SSSTs) derived from planktic foraminiferal associations using the Modern Analog Technique and combined with isotopic analyses and determination of ice-rafted debris, mirror the Pleistocene evolution of the planktic Subantarctic surface waters in the Atlantic Ocean. The SSSTs indicate that the isotherms that define the modern polar front zone and Subantarctic front, were located at more northerly latitudes (up to 7°) during most of the investigated period, which covers the past 550 kyr. Exceptions are during climatic optima in the early Holocene, at marine isotope stages (MIS) 5.5, 7.1, 7.5, 9.3, and presumably during MIS 11.3 when SSSTs exceeded modern values by 1 -5°C. The close similarity between the SSST and the Vostok temperature indicates strong regional temperature correlation. Both records show that MIS 9.3 was the warmest period during the last 420 kyr whereas SSSTs obtained for MIS 11.3 are overestimated due to strong carbonate dissolution. Spectral analysis corroborates that the initiation of warming in southern high latitudes heralds the start of deglaciation on the Northern Hemisphere.
Resumo:
We investigated changes in tropical climate and vegetation cover associated with abrupt climate change during Heinrich Event 1 (HE1, ca. 17.5 ka BP) using two different global climate models: the University of Victoria Earth System-Climate Model (UVic ESCM) and the Community Climate System Model version 3 (CCSM3). Tropical South American and African pollen records suggest that the cooling of the North Atlantic Ocean during HE1 influenced the tropics through a southward shift of the rain belt. In this study, we simulated the HE1 by applying a freshwater perturbation to the North Atlantic Ocean. The resulting slowdown of the Atlantic Meridional Overturning Circulation was followed by a temperature seesaw between the Northern and Southern Hemispheres, as well as a southward shift of the tropical rain belt. The shift and the response pattern of the tropical vegetation around the Atlantic Ocean were more pronounced in the CCSM3 than in the UVic ESCM simulation. For tropical South America, opposite changes in tree and grass cover were modeled around 10° S in the CCSM3 but not in the UVic ESCM. In tropical Africa, the grass cover increased and the tree cover decreased around 15° N in the UVic ESCM and around 10° N in the CCSM3. In the CCSM3 model, the tree and grass cover in tropical Southeast Asia responded to the abrupt climate change during the HE1, which could not be found in the UVic ESCM. The biome distributions derived from both models corroborate findings from pollen records in southwestern and equatorial western Africa as well as northeastern Brazil.
Resumo:
In order to investigate a possible link between tropical Northeast (NE) Atlantic sea-surface temperature (SST), Atlantic meridional overturning circulation (AMOC), and drought in the Sahel during the past 44 thousand years (kyr) we used alkenone paleothermometry and d13C of C. wuellerstorfi of a marine sediment core from the continental slope off Senegal. Our data show periods of low SST and reduced AMOC that coincided with drought in the Sahel during North Atlantic Heinrich stadials (HS). The coldest period was HS1 (ca. 15-18 kyr before present, BP) when SST decreased by more than 2°C. Moreover, the SST off Senegal lagged variations in Sahel aridity, which is in agreement with results from a freshwater hosing experiment. We conclude that variations in tropical NE Atlantic SST were not the initial trigger of millennial-scale Sahel droughts of the past 44 kyr. Instead, it is thought that these droughts were induced by substantial coolings of the extratropical North Atlantic.
Resumo:
Hydrogen isotope values (dD) of sedimentary terrestrial leaf wax such as n-alkanes or n-acids have been used to map and understand past changes in rainfall amount in the tropics because dD of precipitation is commonly assumed as the first order controlling factor of leaf wax dD. Plant functional types and their photosynthetic pathways can also affect leaf wax dD but these biological effects are rarely taken into account in paleo studies relying on this rainfall proxy. To investigate how biological effects may influence dD values we here present a 37,000-year old record of dD and stable carbon isotopes (d13C) measured on four n-alkanes (n-C27, n-C29, n-C31, n-C33) from a marine sediment core collected off the Zambezi River mouth. Our paleo d13C records suggest that each individual n-alkanes had different C3/C4 proportional contributions. n-C29 was mostly derived from a C3 dicots (trees, shrubs and forbs) dominant vegetation throughout the entire record. In contrast, the longer chain n-C33 and n-C31 were mostly contributed by C4 grasses during the Glacial period but shifted to a mixture of C4 grasses and C3 dicots during the Holocene. Strong correlations between dD and d13C values of n-C33 (correlation coefficient R2 = 0.75, n = 58) and n-C31 (R2 = 0.48, n = 58) suggest that their dD values were strongly influenced by changes in the relative contributions of C3/C4 plant types in contrast to n-C29 (R2 = 0.07, n = 58). Within regions with variable C3/C4 input, we conclude that dD values of n-C29 are the most reliable and unbiased indicator for past changes in rainfall, and that dD and d13C values of n-C31 and n-C33 are sensitive to C3/C4 vegetation changes. Our results demonstrate that a robust interpretation of palaeohydrological data using n-alkane dD requires additional knowledge of regional vegetation changes from which nalkanes are synthesized, and that the combination of dD and d13C values of multiple n-alkanes can help to differentiate biological effects from those related to the hydrological cycle.
Resumo:
We present an unprecedented multicentennial sediment record from the foot of Vesterisbanken Seamount, central Greenland Sea, covering the past 22.3 thousand years (ka). Based on planktic foraminiferal total abundances, species assemblages, and stable oxygen and carbon isotopes, the palaeoenvironments in this region of modern deepwater renewal were reconstructed. Results show that during the Last Glacial Maximum the area was affected by harsh polar conditions with only episodic improvements during warm summer seasons. Since 18?ka extreme freshwater discharges from nearby sources occurred, influencing the surface water environment. The last major freshwater event took place during the Younger Dryas. The onset of the Holocene was characterized by an improvement of environmental conditions suggesting warming and increasing ventilation of the upper water layers. The early Holocene saw a stronger Atlantic waters advection to the area, which began around 10.5 and ended quite rapidly at 5.5?ka, followed by the onset of Neoglacial cooling. Surface water ventilation reached a maximum in the middle Holocene. Around 3?ka the surface water stratification increased leading to subsequent amplification of the warming induced the North Atlantic Oscillation at 2?ka.
Resumo:
The high-resolution delta18O and delta13C records of benthic foraminifera from a 150,000-year long core from the Caribbean Sea indicate that there was generally high delta13C during glaciations and low delta13C during interglaciations. Due to its 1800-m sill depth, the properties of deep water in the Caribbean Sea are similar to those of middepth tropical Atlantic water. During interglaciations, the water filling the deep Caribbean Sea is an admixture of low delta13C Upper Circumpolar Water (UCPW) and high delta13C Upper North Atlantic Deep Water (UNADW). By contrast, only high delta13C UNADW enters during glaciations. Deep ocean circulation changes can influence atmospheric CO2 levels (Broecker and Takahashi, 1985; Boyle, 1988 doi:10.1029/JC093iC12p15701; Keir, 1988 doi:10.1029/PA003i004p00413; Broecker and Peng, 1989 doi:10.1029/GB003i003p00215). By comparing delta13C records of benthic foraminifera from cores lying in Southern Ocean Water, the Caribbean Sea, and at several other Atlantic Ocean sites, the thermohaline state of the Atlantic Ocean (how close it was to a full glacial or full interglacial configuration) is characterized. A continuum of circulation patterns between the glacial and interglacial extremes appears to have existed in the past. Subtracting the deep Pacific (~mean ocean water) delta13C record from the Caribbean delta13C record yields a record which describes large changes in the Atlantic Ocean thermohaline circulation. The delta13C difference varies as the vertical nutrient distribution changes. This new proxy record bears a striking resemblance to the 150,000-year-long atmospheric CO2 record (Barnola et al., 1987 doi:10.1038/329408a0). This favorable comparison between the new proxy record and the atmospheric CO2 record is consistent with Boyle's (1988a) model that vertical nutrient redistribution has driven large atmospheric CO2 changes in the past. Changes in the relative contribution of NADW and Pacific outflow water to the Southern Ocean are also consistent with Broecker and Peng's (1989) recent model for atmospheric CO2 changes.
Resumo:
A reconstruction of Holocene sea ice conditions in the Fram Strait provides insight into the palaeoenvironmental and palaeoceanographic development of this climate sensitive area during the past 8,500 years BP. Organic geochemical analyses of sediment cores from eastern and western Fram Strait enable the identification of variations in the ice coverage that can be linked to changes in the oceanic (and atmospheric) circulation system. By means of the sea ice proxy IP25, phytoplankton derived biomarkers and ice rafted detritus (IRD) increasing sea ice occurrences are traced along the western continental margin of Spitsbergen throughout the Holocene, which supports previous palaeoenvironmental reconstructions that document a general cooling. A further significant ice advance during the Neoglacial is accompanied by distinct sea ice fluctuations, which point to short-term perturbations in either the Atlantic Water advection or Arctic Water outflow at this site. At the continental shelf of East Greenland, the general Holocene cooling, however, seems to be less pronounced and sea ice conditions remained rather stable. Here, a major Neoglacial increase in sea ice coverage did not occur before 1,000 years BP. Phytoplankton-IP25 indices ("PIP25-Index") are used for more explicit sea ice estimates and display a Mid Holocene shift from a minor sea ice coverage to stable ice margin conditions in eastern Fram Strait, while the inner East Greenland shelf experienced less severe to marginal sea ice occurrences throughout the entire Holocene.
Resumo:
A multi-proxy palaeoecological investigation including pollen, plant macrofossil, radiocarbon and sedimentological analyses, was performed on a small mountain lake in the Eastern Pyrenees. This has allowed the reconstruction of: (1) the vegetation history of the area based on five pollen diagrams and eight AMS14C dates and (2) the past lake-level changes, based on plant macrofossil, lithological and pollen analysis of two stratigraphical transects correlated by pollen analysis. The palaeolake may have appeared before the Younger Dryas; the lake-level was low and the vegetation dominated by cold steppic grasslands. The lake-level rose to its highest level during the Holocene in the Middle Atlantic (at ca. 5060±45 b.p.). Postglacial forests (Quercetum mixtum and Abieto-Fagetum) developed progressively in the lower part of the valley, while dense Pinus uncinata forests rapidly invaded the surroundings of the mire and remained the dominant local vegetation until present. The observed lowering of the lake levels during the Late Atlantic and the Subboreal (from 5060 ± B.P. to 3590±40 b.p.) was related to the overgrowth of the mire. The first obvious indications of anthropogenic disturbances of the vegetation are recorded at the Atlantic/Subboreal boundary as a reduction in the forest component, which has accelerated during the last two millennia.
Resumo:
Oxygen isotopic and microfaunal analyses and shell size variations of Orbulina universa in two Indian Ocean cores indicate that the position of the Subtropical Convergence has fluctuated between a northern limit north of 31°S during glacial stages and its present, maximum southern limit. The northward displacement of the Subtropical Convergence to a position off Durban, South Africa, reflects the general weakness of the Agulhas Current during glacial stages and parts of interglacial stages, representing about 65 percent of the past 540,000 years.
Resumo:
The circulation and internal structure of the oceans exert a strong influence on Earth's climate because they control latitudinal heat transport and the segregation of carbon between the atmosphere and the abyss (Sigman et al., 2010, doi:10.1038/nature09149). Circulation change, particularly in the Atlantic Ocean, is widely suggested (Bartoli et al., 2005, doi:10.1016/j.epsl.2005.06.020; Haug and Tiedemann, 1998, doi:10.1038/31447; Woodard et al., 2014, doi:10.1126/science.1255586; McKay et al., 2012, doi:10.1073/pnas.1112248109) to have been instrumental in the intensification of Northern Hemisphere glaciation when large ice sheets first developed on North America and Eurasia during the late Pliocene, approximately 2.7 million years ago (Bailey et al., 2013, doi:10.1016/j.quascirev.2013.06.004). Yet the mechanistic link and cause/effect relationship between ocean circulation and glaciation are debated. Here we present new records of North Atlantic Ocean structure using the carbon and neodymium isotopic composition of marine sediments recording deep water for both the Last Glacial to Holocene (35-5 thousand years ago) and the late Pliocene to earliest Pleistocene (3.3-2.4 million years ago). Our data show no secular change. Instead we document major southern-sourced water incursions into the deep North Atlantic during prominent glacials from 2.7 million years ago. Our results suggest that Atlantic circulation acts as a positive feedback rather than as an underlying cause of late Pliocene Northern Hemisphere glaciation. We propose that, once surface Southern Ocean stratification (Sigman, et al., 2004, doi:10.1038/nature02357) and/or extensive sea-ice cover (McKay et al., 2012, doi:10.1073/pnas.1112248109) was established, cold-stage expansions of southern-sourced water such as those documented here enhanced carbon dioxide storage in the deep ocean, helping to increase the amplitude of glacial cycles.
Resumo:
Deep-sea sediments of two cores from the western (TY93-929/P) and the southeastern (MD900963) Arabian Sea were used to study the variations of the Indian monsoon during previous climatic cycles. Core TY93-929/P was located between the SW monsoon driven upwelling centres off Somalia and Oman, which are characterized by large seasonal sea surface temperature (SST) and particle flux changes. By contrast, core MD900963, was situated near the Maldives platform, an equatorial ocean site with a rather small SST seasonality (less than 2°C). For both cores we have reconstructed SST variations by means of the unsaturation ratio of C37 alkenones, which is compared with the delta18O records established on planktonic foraminifera. In general, the SST records follow the delta18O variations, with an SST maximum during oxygen isotope stage 5.5 (the Last Interglacial at about 120-130 kyr) and a broad SST minimum during isotope stage 4 and 3.3 (approximately 40-50 kyr). The SST difference between the Holocene and the Last Glacial Maximum (LGM) is of the order of 2°C. In both cores the SSTs during isotope stage 6 are distinctly higher by 1-2°C than the cold SST minima during the last glacial cycle (LGM and stage 3). To reconstruct qualitatively the past productivity variations for the two cores, we used the concentrations and fluxes of alkenones and organic carbon, together with a productivity index based on coccolith species (Florisphaera profunda relative abundance). Within each core, there is a general agreement between the different palaeoproductivity proxies. In the southeastern Arabian Sea (core MD900963), glacial stages correspond to relatively high productivity, whereas warm interstadials coincide with low productivity. All time series of productivity proxies are dominated by a cyclicity of about 21-23 kyr, which corresponds to the insolation precessional cycle. A hypothesis could be that the NE monsoon winds were stronger during the glacial stages, which induced deepening of the surface mixed layer and injection of nutrients to the euphotic zone. By contrast, the records are more complicated in the upwelling region of the western Arabian Sea (core TY93-929/P). This is partly due to large changes in the sedimentation rates, which were higher during specific periods (isotope stages 6, 5.4, 5.2, 3 and 2). Unlike core MD900963, no simple relationship emerges from the comparison between the delta18O stratigraphy and productivity records. The greater complexity observed for core TY93-929/P could be the result of the superimposition of different patterns of productivity fluctuations for the two monsoon seasons, the SW monsoon being enhanced during interglacial periods, whereas the NE monsoon was increased during glacial intervals. A similar line of reasoning also could help explain the SST records by the superimposition of variations of three components: global atmospheric temperature, and SW and NE monsoon dynamics.