992 resultados para ELECTRON-SPIN POLARIZATION
Resumo:
The electron density response of a uniform two-dimensional (2D) electron gas is investigated in the presence of a perpendicular magnetic field and Rashba spin-orbit interaction (SOI). It is found that, within the Hartree-Fock approximation, a charge density excitation mode below the cyclotron resonance frequency shows a mode softening behavior, when the spin-orbit coupling strength falls into a certain interval. This mode softening indicates that the ground state of an interacting uniform 2D electron gas may be driven by the Rashba SOI to undergo a phase transition to a nonuniform charge density wave state.
Resumo:
We study theoretically the charge-density and spin-density excitations in a two-dimensional electron gas in the presence of a perpendicular magnetic field and a Rashba type spin-orbit coupling. The dispersion and the corresponding intensity of excitations in the vicinity of cyclotron resonance frequency are calculated within the framework of random phase approximation. The dependence of excitation dispersion on various system parameters, i.e., the Rashba spin-orbit interaction strength, the electron density, the Zeeman spin splitting, and the Coulomb interaction strength is investigated.
Resumo:
We investigate theoretically the interplay between Zeeman splitting, Rashba spin-orbit interaction (RSOI), and Dresselhaus spin-orbit interaction (DSOI) and its influence on the magnetotransport property of two-dimensional electron gas (2DEG) at low temperature. Our theoretical results show that the nodes of the beating patterns of the magnetoresistivity rho(xx) for 2DEG with RSOI or DSOI alone depend sensitively on the total spin splitting induced by these three spin splitting mechanisms. It is interesting to find that the eigenstates in the presence of RSOI alone are connected with those in the presence of DSOI alone but with opposite Zeeman splitting by a time-reversal transformation. Consequently, the magnetoresistivities exhibit exactly the same oscillation patterns for these two cases. For strong RSOI or DSOI alone, the magneto-oscillation of rho(xx) shows two distinct periods. For 2DEG with both RSOI and DSOI, the beating patterns vanish for equal RSOI and DSOI strengths and vanishing Zeeman splitting. They will appear again, however, when Zeeman splitting or the difference between RSOI and DSOI strengths increases.
Resumo:
Shubnikov-de Haas measurements were carried out for In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor structures grown on GaAs substrates with different indium contents and/or different Si delta-doping concentrations. Zero-field (B-->0) spin splitting was found in samples with stronger conduction band bending in the InGaAs well. It was shown that the dominant spin splitting mechanism is attributed to the contribution by the Rashba term. We found that zero-field spin splitting not only occurs in the ground electron subband, but also in the first excited electron subband for a sample with Si delta-doping concentration of 6x10(12) cm(-2). We propose that this In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor structure grown on GaAs may be a promising candidate spin-polarized field-effect transistors. (C) 2002 American Institute of Physics.
Resumo:
Cyclotron resonance (CR) of high density GaAs quantum wells exhibits well-resolved spin splitting above the LO-phonon frequency. The spin-up and spin-down CR frequencies are reversed relative to the order expected from simple band nonparabolicity. We demonstrate that this is a consequence of the blocking of the polaron interaction which is a sensitive function of the filling of the Landau levels.
Resumo:
The beating patterns in the Shubnikov-de Haas oscillatory magnetoresistance originating from zero-field spin splitting of two-dimensional electron gases (2DEGs) in In0.52Al0.48As/InxGa1-xAs/In0.52Al0.48As quantum wells with silicon delta doped on the upper barrier layer have been investigated by means of magnetotransport measurements before and after illumination. Contrary to the expectation, after each illumination, the beating nodes induced by the zero-field spin-splitting effect shift to lower and lower magnetic field due to the decrease in the zero-field spin-splitting energy of the 2DEGs. The anomalous phenomenon of the shift of the beating nodes and the decrease in spin-orbit coupling constants after illumination cannot be explained by utilizing the previous linear Rashba model. It is suggested that the decrease in the zero-field spin-splitting energy and the spin-orbit coupling constant arise from the nonlinear Rashba spin splitting.
Resumo:
Photoluminescence (PL) and temperature-dependent Hall effect measurements were carried out in (0001) and (11 (2) over bar0) AlGaN/GaN heterostructures grown on sapphire substrates by metalorganic chemical vapor deposition. There are strong spontaneous and piezoelectric electric fields (SPF) along the growth orientation of the (0001) AlGaN/GaN heterostructures. At the same time there are no corresponding SPF along that of the (1120) AlGaN/GaN. A strong PL peak related to the recombination between two-dimensional electron gas (2DEG) and photoexcited holes was observed at 3.258 eV at room temperature in (0001) AlGaN/GaN heterointerfaces while no corresponding PL peak was observed in (11 (2) over bar0). The existence of a 2DEG was observed in (0001) AlGaN/GaN multi-layers with a mobility saturated at 6000 cm(2)/V s below 80 K, whereas a much lower mobility was measured in (11 (2) over bar0). These results indicated that the SPF was the main element to cause the high mobility and high sheet-electron-density 2DEG in AlGaN/GaN heterostructures. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We report the first measurement of the double-spin asymmetry A{LT} for charged pion electroproduction in semi-inclusive deep-inelastic electron scattering on a transversely polarized {3}He target. The kinematics focused on the valence quark region, 0.16
Resumo:
We present results of a study of the effect of target polarization on electron-ion recombination, and show that coherent radiation by the target electrons gives a large contribution to the recombination rate. It significantly modifies the nonresonant photorecombination background. A procedure has been devised whereby this contribution can be evaluated together with the conventional radiative recombination, independently of the dielectronic recombination component. Numerical results are presented for Zn2+, Cd2+, Sn4+, and Xe8+, showing up to an order-of-magnitude enhancement.
Resumo:
We investigate the role of dynamic polarization of the target electrons in the process of recombination of electrons with multicharged ions (polarizational recombination). Numerical calculations carried out for a number of Ni- and Ne-like ions demonstrate that the inclusion of polarizational recombination leads to a noticeable increase (up to 30%) in the cross sections for incident electron energies outside the regions of dielectronic resonances. We also present a critical analysis of theoretical approaches used by other authors to describe the phenomenon of polarizational recombination.
Resumo:
Recent advances in the development of 2D microstrip detectors open up new possibilities for hard x-ray spectroscopy, in particular for polarization studies. These detectors make ideal Compton polarimeters, which enable us to study precisely the polarization of hard x-rays. Here, we present recent results from measurements of Radiative Electron Capture into the K-shell of highly-charged uranium ions. The experiments were performed with a novel 2D Si(Li) Compton polarimeter at the Experimental Storage Ring at GSI. Stored and cooled beams of U91+ and U92+ ions, with kinetic energies of 43 MeV/u and 96 MeV/u respectively, were crossed with a hydrogen gasjet. The preliminary data analysis shows x-rays from the K-REC process, emitted perpendicularly to the ion beam, to be strongly linearly polarized.
Resumo:
We have developed a method, based on the use of B-spline basis sets and model potentials, for determining properties of systems with two or three electrons outside a polarizable closed-shell core. It is applied to the calculation of the electron affinity of Ca and the resulting value of 17.7 meV is in excellent agreement with the most recent experiments. It is found that the dielectronic core-valence interaction reduces the electron affinity by 39.5 meV.