497 resultados para EFFLUX


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of p75 neurotrophin receptor (p75(NTR)) in mediating cell death is now well charaterized, however, it is only recently that details of the death signaling pathway have become clearer. This review focuses on the importance of the juxtamembrane Chopper domain region of p75(NTR) in this process. Evidence supporting the involvement of K+ efflux, the apoptosome (caspase-9, apoptosis activating factor-1, APAF-1, and Bcl-(xL)), caspase-3, c-jun kinase, and p53 in the p75(NTR) cell death pathway is discussed and regulatory roles for the p75(NTR) ectodomain and death domain are proposed. The role of synaptic activity is also discussed, in particular the importance of neutrotransmitter-activated K+ channels acting as the gatekeepers of cell survival decisions during development and in neurodegenerative conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large blooms of the marine cyanobacterium Lyngbya majuscula in Moreton Bay, Australia (27 degrees 05'S, 153 degrees 08'E) have been re-occurring for several years. A bloom was studied in Deception Bay (Northern Moreton Bay) in detail over the period January-March 2000. In situ data loggers and field sampling characterised various environmental parameters before and during the L. majuscula bloom. Various ecophysiological experiments were conducted on L. majuscula collected in the field and transported to the laboratory, including short-term (2h) C-14 incorporation rates and long-term (7 days) pulse amplitude modulated (PAM) fluorometry assessments of photosynthetic capacity. The effects of L. majuscula on various seagrasses in the bloom region were also assessed with repeated biomass sampling. The bloom commenced in January 2000 following usual December rainfall events, water temperatures in excess of 24 degrees C and high light conditions. This bloom expanded rapidly from 0 to a maximum extent of 8 km(2) over 55 days with an average biomass of 210 g(dw)(-1) m(-2) in late February, followed by a rapid decline in early April. Seagrass biomass, especially Syringodium isoetifolium, was found to decline in areas of dense L. majuscula accumulation. Dissolved and total nutrient concentrations did not differ significantly (P > 0.05) preceding or during the bloom. However, water samples from creeks discharging into the study region indicated elevated concentrations of total iron (2.7-80.6 mu M) and dissolved organic carbon (2.5-24.7 mg L-1), associated with low pH values (3.8-6.7). C-14 incorporation rates by L. majuscula were significantly (P < 0.05) elevated by additions of iron (5 mu M Fe), an organic chelator, ethylenediaminetetra-acetic acid (5 mu M EDTA) and phosphorus (5 mu M PO4-3). Photosynthetic capacity measured with PAM fluorometry was also stimulated by various nutrient additions, but not significantly (P > 0.05). These results suggest that the L. majuscula bloom may have been stimulated by bioavailable iron, perhaps complexed by dissolved organic carbon. The rapid bloom expansion observed may then have been sustained by additional inputs of nutrients (N and P) and iron through sediment efflux, stimulated by redox changes due to decomposing L. majuscula mats. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1 The disposition kinetics of [H-3] taurocholate ([H-3]TC) in perfused normal and cholestatic rat livers were studied using the multiple indicator dilution technique and several physiologically based pharmacokinetic models. 2 The serum biochemistry levels, the outflow profiles and biliary recovery of [H-3] TC were measured in three experimental groups: (i) control; (ii) 17α-ethynylestradiol (EE)-treated (low dose); and (iii) EE-treated (high dose) rats. EE treatment caused cholestasis in a dose-dependent manner. 3 A hepatobiliary TC transport model, which recognizes capillary mixing, active cellular uptake, and active efflux into bile and plasma described the disposition of [H-3]TC in the normal and cholestatic livers better than the other pharmacokinetic models. 4 An estimated five- and 18-fold decrease in biliary elimination rate constant, 1.7- and 2.7-fold increase in hepatocyte to plasma efflux rate constant, and 1.8- and 2.8-fold decrease in [H-3]TC biliary recovery ratio was found in moderate and severe cholestasis, respectively, relative to normal. 5 There were good correlations between the predicted and observed pharmacokinetic parameters of [H-3]TC based on liver pathophysiology (e.g. serum bilirubin level and biliary excretion of [H-3]TC). In conclusion, these results show that altered hepatic TC pharmacokinetics in cholestatic rat livers can be correlated with the relevant changes in liver pathophysiology in cholestasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO) is essential for normal function of the cardiovascular system. This study has determined whether chronic administration of L-arginine, the biological precursor of NO, attenuates the development of structural and functional changes in hearts and blood vessels of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Uninephrectomized rats treated with DOCA (25 mg every 4th day sc) and 1% NaCl in the drinking water for 4 wk were treated with L-arginine (5% in food, 3.4 +/- 0.3 g.kg body wt(-1).day(-1)). Changes in cardiovascular structure and function were determined by echocardiography, microelectrode studies, histology, and studies in isolated hearts and thoracic aortic rings. DOCA-salt hypertensive rats developed hypertension, left ventricular hypertrophy with increased left ventricular wall thickness and decreased ventricular internal diameter, increased inflammatory cell infiltration, increased ventricular interstitial and perivascular collagen deposition, increased passive diastolic stiffness, prolonged action potential duration, increased oxidative stress, and inability to increase purine efflux in response to an increased workload. L-Arginine markedly attenuated or prevented these changes and also normalized the reduced efficacy of norepinephrine and acetylcholine in isolated thoracic aortic rings of DOCA-salt hypertensive rats. This study suggests that a functional NO deficit in blood vessels and heart due to decreased NO synthase activity or increased release of reactive oxygen species such as superoxide may be a key change initiating many aspects of the cardiovascular impairment observed in DOCA-salt hypertensive rats. These changes can be prevented or attenuated by administration of L-arginine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alterations in Ca2+ signaling may contribute to tumorigenesis and the mechanism of action of some anticancer drugs. The plasma membrane calcium-ATPase (PMCA) is a crucial controller of intracellular Ca2+ signaling. Altered PMCA expression occurs in the mammary gland during lactation and in breast cancer cell lines. Despite this, the consequences of PMCA inhibition in breast cancer cell lines have not been investigated. In this work, we used Tet-off PMCA antisense-expressing MCF-7 cells to assess the effects of PMCA inhibition in a human breast cancer cell line. At a level of PMCA inhibition that did not completely prevent PMCA-mediated Ca2+ efflux and did not induce cell death, a dramatic inhibition of cellular proliferation was observed. Fluorescence-activated cell sorting analysis indicated that PMCA antisense involves changes in cell cycle kinetics but not cell cycle arrest. We concluded that modulation of PMCA has important effects in regulating the proliferation of human breast cancer MCF-7 cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cultured human choriocarcinoma cells of the BeWo line exhibited saturable accumulation of radioiodide. Inhibition by competing anions followed the affinity series perchlorate >= iodide >= thiocyanate, consistent with uptake through the thyroid iodide transporter, NIS, whose messenger RNA was found in BeWo cells, and whose protein was distributed towards the apical pole of the cells. Efflux obeyed first order kinetics and was inhibited by DIDS, an antagonist of anion exchangers including pendrin, whose messenger RNA was also present. In cultures where iodide uptake through NIS was blocked with excess perchlorate, radiolodide accumulation was stimulated by exposure to medium in which physiological anions were replaced by 2-morpholinoethanesulfonic acid (MES), consistent with the operation of an anion exchange mechanism taking up iodide. Chloride in the medium was more effective than sulfate at inhibiting this uptake, matching the ionic specificity of pendrin. These studies provide evidence that the trophoblast accumulates iodide through NIS and releases it to the fetal compartment through pendrin. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Verapamil inhibits tri-iodothyronine (T-3) efflux from several cell types, suggesting the involvement of multidrug resistance-associated (MDR) proteins in T-3 transport. The direct involvement of P-glycoprotein (P-gp) has not, however, been investigated. We compared the transport of I-125-T-3 in MDCKII cells that had been transfected with mdr1 cDNA (MDCKII-MDR) versus wild-type MDCKII cells (MDCKII), and examined the effect of conventional (verapamil and nitrendipine) and specific MDR inhibitors (VX 853 and VX 710) on I-125-T-3 efflux. We confirmed by Western blotting the enhanced expression of P-gp in MDCKII-MDR cells. The calculated rate of I-125-T-3 efflux from MDCKII-MDR cells (around 0.30/min) was increased twofold compared with MDCKII cells (around 0.15/min). Overall, cellular accumulation of I-125-T-3 was reduced by 26% in MDCKII-MDR cells compared with MDCKII cells, probably reflecting enhanced export of T-3 from MDCKII-MDR cells rather than reduced cellular uptake, as P-gp typically exports substances from cells. Verapamil lowered the rate of I-125-T-3 efflux from both MDCKII and MDCKII-MDR cells by 42% and 66% respectively, while nitrendipine reduced I-125-T-3 efflux rate by 36% and 48% respectively, suggesting that both substances inhibited other cellular T-3 transporters in addition to P-gp. The specific MDR inhibitors VX 853 and VX 710 had no effect of I-125-T-3 efflux rate from wild-type MDCKII cells but reduced I-125-T-3 export in MDCKII-MDR cells by 50% and 53% respectively. These results have provided the first direct evidence that P-gp exports thyroid hormone from cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rev-erbbeta is an orphan nuclear receptor that selectively blocks trans-activation mediated by the retinoic acid-related orphan receptor-alpha (RORalpha). RORalpha has been implicated in the regulation of high density lipoprotein cholesterol, lipid homeostasis, and inflammation. Rev-erbbeta and RORalpha are expressed in similar tissues, including skeletal muscle; however, the pathophysiological function of Rev-erbbeta has remained obscure. We hypothesize from the similar expression patterns, target genes, and overlapping cognate sequences of these nuclear receptors that Rev-erbbeta regulates lipid metabolism in skeletal muscle. This lean tissue accounts for > 30% of total body weight and 50% of energy expenditure. Moreover, this metabolically demanding tissue is a primary site of glucose disposal, fatty acid oxidation, and cholesterol efflux. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. We utilize ectopic expression in skeletal muscle cells to understand the regulatory role of Rev-erbbeta in this major mass peripheral tissue. Exogenous expression of a dominant negative version of mouse Rev-erbbeta decreases the expression of many genes involved in fatty acid/lipid absorption (including Cd36, and Fabp-3 and -4). Interestingly, we observed a robust induction (> 15-fold) in mRNA expression of interleukin-6, an exercise-induced myokine that regulates energy expenditure and inflammation. Furthermore, we observed the dramatic repression (> 20- fold) of myostatin mRNA, another myokine that is a negative regulator of muscle hypertrophy and hyperplasia that impacts on body fat accumulation. This study implicates Rev-erbbeta in the control of lipid and energy homoeostasis in skeletal muscle. In conclusion, we speculate that selective modulators of Rev-erbbeta may have therapeutic utility in the treatment of dyslipidemia and regulation of muscle growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epipolythiodioxopiperazine toxins are secreted by a range of fungi, including Leptosphaeria maculans, which produces sirodesmin, and Aspergillus fumigatus, which produces gliotoxin. The L. maculans biosynthetic gene cluster for sirodesmin includes an ABC transporter gene, sirA. Disruption of this gene led to increased secretion of sirodesmin into the medium and an altered ratio of sirodesmin to its immediate precursor. The transcription pattern of a peptide synthetase that catalyses an early step in sirodesmin biosynthesis was elevated in the sirA mutant by 47% over a 7-day period. This was consistent with the finding that the transporter mutant had elevated sirodesmin levels. Despite increased production of sirodesmin, the sit-A mutant was more sensitive to both sirodesmin and gliotoxin. The putative gliotoxin transporter gene, gliA, (a major facilitator superfamily transporter) from A.fumigatus complemented the tolerance of the L. maculans sirA mutant to gliotoxin, but not to sirodesmin. The results indicate that SirA contributes to self-protection against sirodesmin in L. maculans and suggest a transporter other than SirA is primarily responsible for efflux of endogenously produced sirodesmin. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Saturated fat plays a role in common debilitating diseases such as obesity, type 2 diabetes, and coronary heart disease. It is also clear that certain fatty acids act as regulators of metabolism via both direct and indirect signalling of target tissues. As the molecular mechanisms of saturated fatty acid signalling in the liver are poorly defined, hepatic gene expression analysis was undertaken in a human hepatocyte cell line after incubation with palmitate. Profiling of mRNA expression using cDNA microarray analysis revealed that 162 of approximately 18,000 genes tested were differentially expressed after incubation with palmitate for 48 h. Altered transcription profiles were observed in a wide variety of genes, including genes involved in lipid and cholesterol transport, cholesterol catabolism, cell growth and proliferation, cell signalling, P-oxidation, and oxidative stress response. While palinitate signalling has been examined in pancreatic beta-cells, this is the first report showing that palmitate regulates expression of numerous genes via direct molecular signalling mechanisms in liver cells. (C) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolism, in part, is regulated by the peroxisome proliferator-activated receptors (PPARs). The PPARs act as nutritional lipid sensors and three mammalian PPAR subtypes designated PPARalpha (NR1C1), PPARgamma (NR1C3) and PPARdelta (NR1C2) have been identified. This subgroup of nuclear hormone receptors binds DNA and controls gene expression at the nexus of pathways that regulate lipid and glucose homeostasis, energy storage and expenditure in an organ-specific manner. Recent evidence has demonstrated activation of PPARdelta in the major mass peripheral tissue (ie, adipose and skeletal muscle). It enhances glucose tolerance, insulin-stimulated glucose disposal, lipid catabolism, energy expenditure, cholesterol efflux and oxygen consumption. These effects positively influence the blood-lipid profile. Furthermore, PPARdelta activation produces a predominant type I/slow twitch/oxidative muscle fiber phenotype that leads to increased endurance, insulin sensitivity and resistance to obesity. PPARdelta has rapidly emerged as a potential target in the battle against dyslipidemia, insulin insensitivity, type II diabetes and obesity, with therapeutic efficacy in the treatment of cardiovascular disease risk factors. GW-501516 is currently undergoing phase II safety and efficacy trials in human volunteers for the treatment of dyslipidemia. The outcome of these clinical trials are eagerly awaited against a background of conflicting reports about cancer risks in genetically predisposed animal models. This review focuses on the potential pharmacological utility of selective PPARdelta agonists in the context of risk factors associated with metabolic and cardiovascular disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cholesterol is a major component of atherosclerotic plaques. Cholesterol accumulation within the arterial intima and atherosclerotic plaques is determined by the difference of cellular cholesterol synthesis and/or influx from apo B-containing lipoproteins and cholesterol efflux. In humans, apo A-I Milano infusion has led to rapid regression of atherosclerosis in coronary arteries. We hypothesised that a multifunctional plasma delipidation process (PDP) would lead to rapid regression of experimental atherosclerosis and probably impact on adipose tissue lipids. In hyperlipidemic animals, the plasma concentrations of cholesterol, triglyceride and phospholipid were, respectively, 6-, 157-, and 18-fold higher than control animals, which consequently resulted in atherosclerosis. PDP consisted of delipidation of plasma with a mixture of butanol-diisopropyl ether (DIPE). PDP removed considerably more lipid from the hyperlipidemic animals than in normolipidemic animals. PDP treatment of hyperlipidemic animals markedly reduced intensity of lipid staining materials in the arterial wall and led to dramatic reduction of lipid in the adipose tissue. Five PDP treatments increased apolipoprotein A1 concentrations in all animals. Biochemical and hematological parameters were unaffected during PDP treatment. These results show that five PDP treatments led to marked reduction in avian atherosclerosis and removal of lipid from adipose tissue. PDP is a highly effective method for rapid regression of atherosclerosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A defining property of murine hematopoietic stein cells (HSCs) is low fluorescence after staining with Hoechst 33342 and Rhodamine 123. These dyes have proven to be remarkably powerful tools in the purification and characterization of HSCs when used alone or in combination with antibodies directed against stem cell epitopes. Hoechst low cells are described as side population (SP) cells by virtue of their typical profiles in Hoechst red versus Hoechst blue bivariate fluorescent-activated cell sorting dot plots. Recently, excitement has been generated by the findings that putative stem cells from solid tissues may also possess this SP phenotype. SP cells have now been isolated from a wide variety of mammalian tissues based on this same dye efflux phenomenon, and in many cases this cell population has been shown to contain apparently multipotent stem cells. What is yet to be clearly addressed is whether cell fusion accounts for this perceived SP multipotency. Indeed, if low fluorescence after Hoechst staining is a phenotype shared by hematopoietic and organ-specific stem cells, do all resident tissue SP cells have bone marrow origins or might the SP phenotype be a property common to all stem cells? Subject to further analysis, the SP phenotype may prove invaluable for the initial isolation of resident tissue stem cells in the absence of definitive cell-surface markers and may have broad-ranging applications in stem cell biology, from the purification of novel stem cell populations to the development of autologous stem cell therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cleavage-stage embryos have an absolute requirement for pyruvate and lactate, but as the morula compacts, it switches to glucose as the preferred energy source to fuel glycolysis. Substrates such as glucose, amino acids, and lactate are moved into and out of cells by facilitated diffusion. in the case of lactate and pyruvate, this occurs via H+-monocarboxylate cotransporter (MCT) proteins. To clarify the role of MCT in development, transport characteristics for DL-lactate were examined, as were mRNA expression and protein localisation for MCT1 and MCT3, using confocal laser scanning immunofluorescence in freshly collected and cultured embryos. Blastocysts demonstrated significantly higher affinity for DL-lactate than zygotes (K-m 20 +/- 10 vs 87 +/- 35 mmol lactate/l; P = 0.03 by linear regression) but was similar for all stages. For embryos derived in vivo and those cultured with glucose, MCT1 mRNA was present throughout preimplantation development, protein immunoreactivity appearing diffuse throughout the cytoplasm with brightest intensity in the outer cortical region of blastomeres. in expanding blastocysts, MCT1 became more prominent in the cytoplasmic cortex of blastomeres, with brightest intensity in the polar trophectoderm. Without glucose, MCT1 mRNA was not expressed, and immunoreactivity dramatically reduced in intensity as morulae died. MCT3 mRNA and immunoreactivity were not detected in early embryos. The differential expression of MCT1 in the presence or absence of glucose demonstrates that it is important in the critical regulation of pH and monocarboxylate transport during preimplantation development, and implies a role for glucose in the control of MCT1, but not MCT3, expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Orphan nuclear receptors: therapeutic opportunities in skeletal muscle. Am J Physiol Cell Physiol 291: C203-C217, 2006; doi: 10.1152/ajpcell. 00476.2005.-Nuclear hormone receptors (NRs) are ligand-dependent transcription factors that bind DNA and translate physiological signals into gene regulation. The therapeutic utility of NRs is underscored by the diversity of drugs created to manage dysfunctional hormone signaling in the context of reproductive biology, inflammation, dermatology, cancer, and metabolic disease. For example, drugs that target nuclear receptors generate over $10 billion in annual sales. Almost two decades ago, gene products were identified that belonged to the NR superfamily on the basis of DNA and protein sequence identity. However, the endogenous and synthetic small molecules that modulate their action were not known, and they were denoted orphan NRs. Many of the remaining orphan NRs are highly enriched in energy-demanding major mass tissues, including skeletal muscle, brown and white adipose, brain, liver, and kidney. This review focuses on recently adopted and orphan NR function in skeletal muscle, a tissue that accounts for similar to 35% of the total body mass and energy expenditure, and is a major site of fatty acid and glucose utilization. Moreover, this lean tissue is involved in cholesterol efflux and secretes that control energy expenditure and adiposity. Consequently, muscle has a significant role in insulin sensitivity, the blood lipid profile, and energy balance. Accordingly, skeletal muscle plays a considerable role in the progression of dyslipidemia, diabetes, and obesity. These are risk factors for cardiovascular disease, which is the the foremost cause of global mortality (> 16.7 million deaths in 2003). Therefore, it is not surprising that orphan NRs and skeletal muscle are emerging as therapeutic candidates in the battle against dyslipidemia, diabetes, obesity, and cardiovascular disease.