938 resultados para E6 VARIANTS
Resumo:
We have isolated overlapping cDNAs encoding the N-terminal non-triple-helical region of mouse alpha 1(XVIII) collagen and shown that three different variants of alpha 1(XVIII) collagen exist. Each of the three variants shows characteristic tissue-specific expression patterns. Immunohistochemical studies show positive staining for alpha 1(XVIII) collagen along the basement membrane zones of vessels in the intestinal villi, the choroid plexus, skin, liver, and kidney. Thus, we conclude that alpha 1(XVIII) collagen may interact (directly or indirectly) with components in basement membrane zones or on the basal surface of endothelial/epithelial cells.
Resumo:
Multiple mammary epithelial cell (MEC) types are observed both in mammary ducts in vivo and in primary cultures in vitro; however, the oncogenic potential of different cell types remains unknown. Here, we used human papilloma virus 16 E6 and E7 oncogenes, which target p53 and Rb tumor suppressor proteins, respectively, to immortalize MECs present in early or late passages of human mammary tissue-derived cultures or in milk. One MEC subtype was exclusively immortalized by E6; such cells predominated in late-passage cultures but were rare at early passages and apparently absent in milk. Surprisingly, a second cell type, present only in early-passage tissue-derived cultures, was fully immortalized by E7 alone. A third cell type, observed in tissue-derived cultures and in milk, showed a substantial extension of life span with E7 but eventually senesced. Finally, both E6 and E7 were required to fully immortalize milk-derived MECs and a large proportion of MECs in early-passage tissue-derived cultures, suggesting the presence of another discrete subpopulation. Identification of MECs with distinct susceptibilities to p53- and Rb-targeting human papillomavirus oncogenes raises the possibility that these cells may serve as precursors for different forms of breast cancer.
Resumo:
The E6 protein of the high-risk human papillomaviruses inactivates the tumor suppressor protein p53 by stimulating its ubiquitinylation and subsequent degradation. Ubiquitinylation is a multistep process involving a ubiquitin-activating enzyme, one of many distinct ubiquitin-conjugating enzymes, and in certain cases, a ubiquitin ligase. In human papillomavirus-infected cells, E6 and the E6-associated protein are thought to act as a ubiquitin-protein ligase in the ubiquitinylation of p53. Here we describe the cloning of a human ubiquitin-conjugating enzyme that specifically ubiquitinylates E6-associated protein. Furthermore, we define the biochemical pathway of p53 ubiquitinylation and demonstrate that in vivo inhibition of various components in the pathway leads to an inhibition of E6-stimulated p53 degradation.
Resumo:
E6-AP is a 100-kDa cellular protein that interacts with the E6 protein of the cancer-associated human papillomavirus types 16 and 18. The E6/E6-AP complex binds to and targets the p53 tumor-suppressor protein for ubiquitin-mediated proteolysis. E6-AP is an E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. The amino acid sequence of E6-AP shows similarity to a number of protein sequences over an approximately 350-aa region corresponding to the carboxyl termini of both E6-AP and the E6-AP-related proteins. Of particular note is a conserved cysteine residue within the last 32-34 aa, which in E6-AP is likely to be the site of ubiquitin thioester formation. Two of the E6-AP-related proteins, a rat 100-kDa protein and a yeast 95-kDa protein (RSP5), both of previously unknown function, are shown here to form thioesters with ubiquitin. Mutation of the conserved cysteine residue of these proteins destroys their ability to accept ubiquitin. These data strongly suggest that the rat 100-kDa protein and RSP5, as well as the other E6-AP-related proteins, belong to a class of functionally related E3 ubiquitin-protein ligases, defined by a domain homologous to the E6-AP carboxyl terminus (hect domain).
Resumo:
A infecção por papilomavirus é a principal causa de desenvolvimento de neoplasias intraepiteliais cervicais (NIC) e câncer do colo do útero (CCU). Estudos epidemiológicos têm demonstrado que a persistência do genoma viral encontra-se associado a variantes moleculares específicas de papilomavirus humano (HPV) de alto risco. As moléculas HLA de classe II têm um importante papel na resposta imune. Associações entre HLA e CCU ou infecção por HPV tem sido demonstrado em diferentes populações. O nosso objetivo foi verificar se a variabilidade de HLA-DRB1 e DQB1 estavam associada ao CCU e NIC III em mulheres de Belém, uma população formada pelos 3 principais grupos étnicos humanos e uma área de alto risco para o CCU no Norte do Brasil. Foi investigada a existência de diferenças na distribuição de alelos HLA entre mulheres com CCU e NIC III portadoras de diferentes variantes de HPV-16 e mulheres citologicamente normais. Os genes HLA DQB1 e DRB1 foram tipados pelo método de PCR-SSO em 95 casos e 287 controles de mulheres com citologia normal atendidas em um centro de prevenção do colo do útero na mesma cidade. As variantes de HPV-16 foram tipadas por sequenciamento de um fragmento da região controladora do genoma viral (LCR). O polimorfismo na posição 350 do gene E6 foi tipado baseado em um protocolo de hibridização em pontos, para identificar a alteração na posição 350T→G. A magnitude das associações foi estimada por odds ratio (OR) e os respectivos intervalos de confiança (IC), ajustados para potenciais fatores de confusão. Uma associação positiva foi observada entre CCU e os haplótipos DRB1* 150 l-DQB1*0602, DRB1*04-DQB1*0301 e DRB1*1602-DQB1*0301. Ao contrário, DRB1*01-DQB1*0501 mostrou um efeito protetor. Os alelos DRB1*0804, DQB1*0402 apresentaram efeito protetor contra positividade por HPV. O alelo DQB1*0502 e o grupo DRB1*15 foram positivamente associados. Os nossos resultados mostram que as associações positivas de DRB1*1501 e DRB1*1602 podem ser atribuídas a variantes asiático-americanas quando comparado a variantes européias. O risco conferido a DRB1*1501 foi encontrado associado tanto a variantes E6350G quanto a variantes E6350T, entretanto, o maior efeito foi devido às variantes E6250T. A associação positiva de DRB1*1602 foi significativa somente no grupo de mulheres positivas para E6350G. Estes resultados estão de acordo com a composição étnica da população estudada bem como um maior potencial oncogênico de certas variantes. Nossos dados sugerem que a contribuição dos alelos HLA na susceptibilidade genética ao CCU difere de acordo com a distribuição das variantes de HPV em uma dada região geográfica ou grupo étnico.
Resumo:
Objective: In Southern European countries up to one-third of the patients with hereditary hemochromatosis (HH) do not present the common HFE risk genotype. In order to investigate the molecular basis of these cases we have designed a gene panel for rapid and simultaneous analysis of 6 HH-related genes (HFE, TFR2, HJV, HAMP, SLC40A1 and FTL) by next-generation sequencing (NGS). Materials and Methods: Eighty-eight iron overload Portuguese patients, negative for the common HFE mutations, were analysed. A TruSeq Custom Amplicon kit (TSCA, by Illumina) was designed in order to generate 97 amplicons covering exons, intron/exon junctions and UTRs of the mentioned genes with a cumulative target sequence of 12115bp. Amplicons were sequenced in the MiSeq instrument (IIlumina) using 250bp paired-end reads. Sequences were aligned against human genome reference hg19 using alignment and variant caller algorithms in the MiSeq reporter software. Novel variants were validated by Sanger sequencing and their pathogenic significance were assessed by in silico studies. Results: We found a total of 55 different genetic variants. These include novel pathogenic missense and splicing variants (in HFE and TFR2), a very rare variant in IRE of FTL, a variant that originates a novel translation initiation codon in the HAMP gene, among others. Conclusion: The merging of TSCA methodology and NGS technology appears to be an appropriate tool for simultaneous and fast analysis of HH-related genes in a large number of samples. However, establishing the clinical relevance of NGS-detected variants for HH development remains a hard-working task, requiring further functional studies.
Resumo:
BACKGROUND Canine atopic dermatitis (CAD) is a chronic inflammatory skin disease triggered by allergic reactions involving IgE antibodies directed towards environmental allergens. We previously identified a ~1.5 Mb locus on canine chromosome 27 associated with CAD in German shepherd dogs (GSDs). Fine-mapping indicated association closest to the PKP2 gene encoding plakophilin 2. RESULTS Additional genotyping and association analyses in GSDs combined with control dogs from five breeds with low-risk for CAD revealed the top SNP 27:19,086,778 (p = 1.4 × 10(-7)) and a rare ~48 kb risk haplotype overlapping the PKP2 gene and shared only with other high-risk CAD breeds. We selected altogether nine SNPs (four top-associated in GSDs and five within the ~48 kb risk haplotype) that spanned ~280 kb forming one risk haplotype carried by 35 % of the GSD cases and 10 % of the GSD controls (OR = 5.1, p = 5.9 × 10(-5)), and another haplotype present in 85 % of the GSD cases and 98 % of the GSD controls and conferring a protective effect against CAD in GSDs (OR = 0.14, p = 0.0032). Eight of these SNPs were analyzed for transcriptional regulation using reporter assays where all tested regions exerted regulatory effects on transcription in epithelial and/or immune cell lines, and seven SNPs showed allelic differences. The DNA fragment with the top-associated SNP 27:19,086,778 displayed the highest activity in keratinocytes with 11-fold induction of transcription by the risk allele versus 8-fold by the control allele (pdifference = 0.003), and also mapped close (~3 kb) to an ENCODE skin-specific enhancer region. CONCLUSIONS Our experiments indicate that multiple CAD-associated genetic variants located in cell type-specific enhancers are involved in gene regulation in different cells and tissues. No single causative variant alone, but rather multiple variants combined in a risk haplotype likely contribute to an altered expression of the PKP2 gene, and possibly nearby genes, in immune and epithelial cells, and predispose GSDs to CAD.
Resumo:
Multiple sclerosis (MS) is a prevalent neurological disease of complex etiology. Here, we describe the characterization of a multi-incident MS family that nominated a rare missense variant (p.G420D) in plasminogen (PLG) as a putative genetic risk factor for MS. Genotyping of PLG p.G420D (rs139071351) in 2160 MS patients, and 886 controls from Canada, identified 10 additional probands, two sporadic patients and one control with the variant. Segregation in families harboring the rs139071351 variant, identified p.G420D in 26 out of 30 family members diagnosed with MS, 14 unaffected parents, and 12 out of 30 family members not diagnosed with disease. Despite considerably reduced penetrance, linkage analysis supports cosegregation of PLG p.G420D and disease. Genotyping of PLG p.G420D in 14446 patients, and 8797 controls from Canada, France, Spain, Germany, Belgium, and Austria failed to identify significant association with disease (P = 0.117), despite an overall higher prevalence in patients (OR = 1.32; 95% CI = 0.93-1.87). To assess whether additional rare variants have an effect on MS risk, we sequenced PLG in 293 probands, and genotyped all rare variants in cases and controls. This analysis identified nine rare missense variants, and although three of them were exclusively observed in MS patients, segregation does not support pathogenicity. PLG is a plausible biological candidate for MS owing to its involvement in immune system response, blood-brain barrier permeability, and myelin degradation. Moreover, components of its activation cascade have been shown to present increased activity or expression in MS patients compared to controls; further studies are needed to clarify whether PLG is involved in MS susceptibility.
Resumo:
Owing to their pathogenical role and unique ability to exist both as soluble proteins and transmembrane complexes, pore-forming toxins (PFTs) have been a focus of microbiologists and structural biologists for decades. PFTs are generally secreted as water-soluble monomers and subsequently bind the membrane of target cells. Then, they assemble into circular oligomers, which undergo conformational changes that allow membrane insertion leading to pore formation and potentially cell death. Aerolysin, produced by the human pathogen Aeromonas hydrophila, is the founding member of a major PFT family found throughout all kingdoms of life. We report cryo-electron microscopy structures of three conformational intermediates and of the final aerolysin pore, jointly providing insight into the conformational changes that allow pore formation. Moreover, the structures reveal a protein fold consisting of two concentric β-barrels, tightly kept together by hydrophobic interactions. This fold suggests a basis for the prion-like ultrastability of aerolysin pore and its stoichiometry.
Resumo:
"List of authorities": v. 1, p. xi-xiv; v. 2, p. vii-ix.
Resumo:
Mode of access: Internet.
Resumo:
Memoir of the editor (with portrait): vol. I, p. [xiii]-xvi.
Resumo:
Thesis (Master's)--University of Washington, 2016-06