971 resultados para Domestic relations--Turkey
Resumo:
Phase relations in the system Mn-Rh-O are established at 1273 K by equilibrating different compositions either in evacuated quartz ampules or in pure oxygen at a pressure of 1.01 x 10(5) Pa. The quenched samples are examined by optical microscopy, X-ray diffraction, and energy-dispersive X-ray analysis (EDAX). The alloys and intermetallics in the binary Mn-Rh system are found to be in equilibrium with MnO. There is only one ternary compound, MnRh2O4, with normal spinel structure in the system. The compound Mn3O4 has a tetragonal structure at 1273 K. A solid solution is formed between MnRh2O4 and Mn3O4. The solid solution has the cubic structure over a large range of composition and coexists with metallic rhodium. The partial pressure of oxygen corresponding to this two-phase equilibrium is measured as a function of the composition of the spinel solid solution and temperature. A new solid-state cell, with three separate electrode compartments, is designed to measure accurately the chemical potential of oxygen in the two-phase mixture, Rh + Mn3-2xRh2xO4, which has 1 degree of freedom at constant temperature. From the electromotive force (emf), thermodynamic mixing properties of the Mn3O4-MnRh2O4 solid solution and Gibbs energy of formation of MnRh2O4 are deduced. The activities exhibit negative deviations from Raoult's law for most of the composition range, except near Mn3O4, where a two-phase region exists. In the cubic phase, the entropy of mixing of the two Rh3+ and Mn3+ ions on the octahedral site of the spinel is ideal, and the enthalpy of mixing is positive and symmetric with respect to composition. For the formation of the spinel (sp) from component oxides with rock salt (rs) and orthorhombic (orth) structures according to the reaction, MnO (rs) + Rh2O3 (orth) --> MnRh2O4 (sp), DELTAG-degrees = -49,680 + 1.56T (+/-500) J mol-1. The oxygen potentials corresponding to MnO + Mn3O4 and Rh + Rh2O3 equilibria are also obtained from potentiometric measurements on galvanic cells incorporating yttria-stabilized zirconia as the solid electrolyte. From these results, an oxygen potential diagram for the ternary system is developed.
Resumo:
Zirconia-based solid electrolytes with zircon (ZrSiO4) as the auxiliary electrode have been suggested of sensing silicon concentrations in iron and steel melts. A knowledge of phase relations in the ternary system MO-SiO2-ZrO2 (M = Ca, Mg) is useful for selecting an appropriate auxiliary electrode. In this investigation, an isothermal section for the phase diagram of the system CaO-SiO2ZrO2 at 1573 K has been established by equilibrating mixtures of component oxides in air, followed by quenching and phase identification by optical miroscopy, energy disperse analysis of X-rays (EDAX) and X-ray diffraction analysis (XRD). The equilibrium phase relations have also been confirmed by computation using the available thermodynamic data on condensed phases in the system. The results indicate that zircon is not in thermodynamic equilibrium with calcia-stabilized zirconia or calcium zirconate. The silica containing phase in equilibrium with stabilized zirconia is Ca3ZrSi2O9. Calcium zirconate can coexist with Ca3ZrSi2O9 and Ca2SiO4.
Resumo:
The phase relations in the system Cu-Ho-O have been determined at 1300 K using X-ray diffraction, optical microscopy, and electron microprobe analysis of samples equilibrated in evacuated quartz ampules and in pure oxygen. Only one ternary compound, Cu2Ho2O5, was found to be stable. The Gibbs free energy of formation of this compound has been measured using the solid-state cell Pt,Cu2O + Cu2Ho2O5 + Ho2O3/(Y2O3)ZrO2/CuO + Cu2O,Pt in the temperature range of 973 to 1350 K. For the formation of Cu2Ho2O5 from its binary component oxides, 2CuO(s) + Ho2O3(S) --> Cu2Ho2O5(s) DELTAG-degrees = 11190 - 13.8T(+/- 120) J-mol-1 Since the formation is endothermic, CU2Ho2O5 becomes thermodynamically unstable with respect to CuO and Ho2O3 below 810 K. When the oxygen partial pressure over Cu2Ho2O5 is lowered, it decomposes according to the reaction 2Cu2Ho2O5(s) --> 2Ho2O3(s) + 2Cu2O(S) + O2(g) for which the equilibrium oxygen potential is given by DELTAmu(O2) = - 238510 + 160.2T(+/- 450) J.mol-1 The decomposition temperature at an oxygen partial pressure of 1.52 x 10(4) Pa was measured using a combined DTA-TGA apparatus. Based on these results, an oxygen potential diagram for the system Cu-Ho-O at 1300 K is presented.
Resumo:
Analysis of experimental data of soils in both the normally consolidated and overconsolidated states reveal that the proposed relationships are tenable. Preconsolidation stress level influences the level of permeability.
Resumo:
Phase relations in the system La-Rh-O at 1223 Ii have been determined by examination of equilibrated samples by optical and scanning electron microscopy, powder X-ray diffraction (XRD), and energy-dispersive analysis of X-rays (EDAX). Only one ternary oxide, LaRhO3, with distorted orthorhombic perovskite structure (Pbnm, a = 0.5525, b = 0.5680, and c = 0.7901 nm) was identified. The alloys and intermetallics along the La-Rh binary are in equilibrium with La2O3. The thermodynamic properties of LaRhO3 were determined in the temperature range 890 to 1310 K, using a solid-state cell incorporating yttria-stabilized zirconia as the electrolyte. A new four-compartment design of the emf cell was used to enhance the accuracy of measurement. For the reaction 1/2La(2)O(3) + 1/2Rh(2)O(3) --> LaRhO3, Delta G degrees = - 70 780 + 4.89T (+/- 90) J.mol(-1) The compound decomposes on heating to a mixture of La2O3, Ph and O-2. The calculated decomposition temperatures are 1843 (+/- 5) K in pure O-2 and 1728 (+/- 5) K in air at a pressure of 1.01 x 10(5) Pa. The phase diagrams for the system La-Rh-O at different partial pressures of oxygen are calculated from the thermodynamic information.
Resumo:
Wet chemical reaction of hydrated alumina gels, Al2O3.yH(2)O(80
Resumo:
The stability fields of various sulfide phases that form on Fe-Cr, Fe-Ni, Ni-Cr, and Fe-Cr-Ni alloys have been developed as a function of temperature and the partial pressure of sulfur. The calculated stability fields in the ternary A-B-S system are displayed on plots of log \textpS2 pS2 vs. the conjugate extensive variable (nA/nA–nB), which provides a better framework for following the sulfidation of Fe-Cr-Ni alloys at high temperatures. Experimental and estimated thermodynamic data were used in developing the sulfur potential diagrams. Current models and correlations were employed to estimate the unknown thermodynamic behavior of solid solutions of sulfides and to supplement the incomplete phase-diagram data of geophysical literature. These constructed stability field diagrams are in excellent agreement with the sulfide phases and compositions determined experimentally during the sulfidation of SAE 310 stainless steel. The sulfur potential plots appear to be very useful in predicting and correlating the sulfidation of commercial alloys.
Resumo:
The tie-lines delineating equilibria between CoO-NiO and Co-Ni solid solutions in the ternary Co-Ni-O system at 1373 K have been determined by electron microprobe andedax point count analysis of the oxide phase equilibrated with the alloy. The oxygen potentials corresponding to the tie-line compositions have been measured using a solid oxide galvanic cell with calcia-stabilized zirconia electrolyte and Ni + NiO reference electrode. Activities in the metallic and oxide solid solution have been derived using a new Gibbs-Duhem integration technique. Both phases exhibit small positive deviations from ideality; the values ofG E/X 1 X 2 are 2640 J mol−1 for the metallic phase and 2870 J mol−1 for the oxide solid solution.
Resumo:
A solid state galvanic cell incorporating yttria-stabilized zirconia electrolyte and ruthenium(IV) oxide electrodes has been used to measure the equilibrium chemical potential of oxygen corresponding to the decomposition of CuCrO4 in the range 590–760 K. For the reaction CuO(tenorite) + CuCr2O4(spinel) + 1.5O2(g)→2CuCrO4(orth), ΔGXXX = −183540 + 249.6T(±900) J mol−1. The decomposition temperature of CuCrO4 in pure oxygen at a pressure of 1.01 × 105 Pa is 735(±1) K. By combining the results obtained in this study with data on the Gibbs energy of formation of CuCr2O4 and CuCrO2 reported earlier, the standard Gibbs energy of formation of CuCrO4 and the phase relations in the system Cu-Cr-O at temperatures below 735 K have been deduced. Electron microscopic studies have indicated that the decomposition of CuCrO4 to CuCr2O4 is topotactic.
Resumo:
Phase relations in the systems SrO-Y2O3-CuO-O2 and CaO-Y2O3-CuO-O2 at 1173 K were established by equilibrating different compositions in flowing oxygen gas at a pressure of 1.01 × 105 Pa. The quenched samples were examined by optical microscopy, X-ray diffraction (XRD), energy dispersive analysis of X-rays (EDAX), and electron spin resonance (ESR). In the system SrO-Y2O3-CuO-O2, except for the limited substitution of Y3+ for Sr2+ ions in the ternary oxide Sr14Cu24O41, no new quaternary phase was found to be stable. The compositions corresponding to the solid solution Sr14−xYxCu24O41 and the compound SrCuO2+δ lie above the plane containing SrO, Y2O3, and CuO,displaced towards the oxygen apex. However, in the system CaO-Y203-CuO-O2 at 1173 K, all the condensed phases lie on the plane containing CaO, Y203, and CuO, and a new quaternary oxide YCa2Cu306.s is present. The quaternary phase has a composition that lies at the center of the nonstoichiometric field of the analogous phase YBa2Cu307_~ in the BaO-Y203-CuO-O2 system. The compound YCa2Cu306.s has the tetragonal structure and does not become superconducting at low temperature. Surprisingly, phase relations in the three systems CaO-Y203-CuO-O2, SrO-Y203-CuO-O2, and BaO-Y203-CuO-O2 are found to be quite different.
Resumo:
The standard Gibbs energies of formation of SrIrO3, Sr2IrO4 and Sr4IrO6 have been determined in the temperature range from 975 to 1400 K using solid-state cells with (Y2O3) ZrO2 as the electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode. For the design of appropriate working electrodes, phase relations in the ternary system Sr–Ir–O were investigated at 1350 K. The only stable oxide detected along the binary Ir–O was IrO2. Three ternary oxides, SrIrO3, Sr2IrO4 and Sr4IrO6, compositions of which fall on the join SrO–IrO2, were found to be stable. Each of the oxides coexisted with pure metal Ir. Therefore, three working electrodes were prepared consisting of mixtures of Ir+SrO+Sr4IrO6, Ir+Sr4IrO6+Sr2IrO4, and Ir+Sr2IrO4+SrIrO3. These mixtures unambiguously define unique oxygen chemical potentials under isothermal and isobaric conditions. Used for the measurements was a novel apparatus, in which a buffer electrode was introduced between reference and working electrodes to absorb the electrochemical flux of oxygen through the solid electrolyte. The buffer electrode prevented polarization of the measuring electrode and ensured accurate data. The standard Gibbs energies of formation of the compounds, obtained from the emf of the cells, can be represented by the following equations: View the MathML sourcem View the MathML source View the MathML source where Δf (ox)Go represents the standard Gibbs energy of formation of the ternary compound from its component binary oxides SrO and IrO2. Based on the thermodynamic information, chemical potential diagrams for the system Sr–Ir–O were developed.
Resumo:
Phase relations in the system Cu-La-O at 1200 K have been determined by equilibrating samples of different average composition at 1200 K, and phase analysis of quenched samples using optical microscopy, XRD, SEM and EDX. The equilibration experiments were conducted in evacuated ampoules, and under flowing inert gas and pure oxygen. There is only one stable binary oxide La2O3 along the binary La-O, and two oxides Cu2O and CuO along the binary Cu-O. The Cu-La alloys were found to be in equilibrium with La2O3. Two ternary oxides CuLaO2 and CuLa2O4+
Resumo:
Phase relations in the system Cu-Eu-O have been determined by equilibrating samples of different average composition at 1200 K and by phase analysis after quenching using optical microscopy (OM), x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray (EDX). The equilibration experiments were conducted in evacuated ampoules and under flowing inert gas and pure oxygen. The Cu-Eu alloys were found to be in equilibrium with EuO. The higher oxides of europium, Eu3O4 and Eu2O3, coexist with metallic copper. Two ternary oxides CuEu2O4 and CuEuO2 were found to be stable. The ternary oxide CuEuO2, with copper in the monovalent state, can coexist with Cu, Cu2O, Eu2O3 and CuEu2O4 in different phase fields. The compound CuEu2O4 can be in equilibrium with Cu2O, CuO, CuEuO2, Eu2O3, and O2 gas under different conditions at 1200 K. Thermodynamic properties of the ternary oxides were determined using three solid-state cells based on yttria-stabilized zirconia as the electrolyte in the temperature range from 875 to 1250 K. The cells essentially measure the oxygen chemical potential in the three-phase fields: Cu+Eu2O3+CuEuO2, Cu2O+CuEuO2+CuEu2O4, and Eu2O3+CuEuO2+CuEu2O4. The thermodynamic properties of the ternary oxides can be represented by the equations: $\begin{gathered} {\raise0.5ex\hbox{$Couldn't find \end for begin{gathered} Thermogravimetric analysis (TGA) studies in Ar+O2 mixtures confirmed the results from emf measurements. An oxygen potential diagram for the system Cu-Eu-O at 1200 K was evaluated from the results of this study and information available in the literature on the binary phases.