966 resultados para Distribution in coals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of pollen in marine sediments is used to reconstruct pathways of terrigenous input to the oceans and provides a record of vegetation change on adjacent continents. The wind transport routes of aeolian pollen is comprehensively illustrated by clusters of trajectories. Isobaric, 4-day backward trajectories are calculated using the modelled wind-field of ECHAM3, and are clustered on a seasonal basis to estimate the main pathways of aeolian particles to sites of marine cores in the south-eastern Atlantic. Trajectories and clusters based on the modelled wind-field of the Last Glacial Maximum hardly differ from those of the present-day. Trajectory clusters show three regional, and two seasonal patterns, determining the pathways of aeolian pollen transport into the south-eastern Atlantic ocean. Mainly, transport out of the continent occurs during austral fall and winter, when easterly and south-easterly winds prevail. South of 25°S, winds blow mostly from the west and southwest, and aeolian terrestrial input is very low. Generally, a good latitudinal correspondence exists between the distribution patterns of pollen in marine surface sediments and the occurrence of the source plants on the adjacent continent. The northern Angola Basin receives pollen and spores from the Congolian and Zambezian forests mainly through river discharge. The Zambezian vegetation zone is the main source area for wind-blown pollen in sediments of the Angola Basin, while the semi-desert and desert areas are the main sources for pollen in sediments of the Walvis Basin and on the Walvis Ridge. A transect of six marine pollen records along the south-western African coast indicates considerable changes in the vegetation of southern Africa between glacial and interglacial periods. Important changes in the vegetation are the decline of forests in equatorial Africa and the north of southern Africa and a northward shift of winter rain vegetation along the western escarpment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Textural and compositional differences were found between gravity-flow sheets in an open-ocean environment on the northern slope of Little Bahama Bank (Site 628, Pliocene turbidite sequence) and in a closed-basin depositional setting (Site 632, Quaternary turbidite sequence). Mud-supported debris-flow sheets were cored at Site 628. Average mean grain size of the turbidite samples was lower, mud content was higher, and sorting was poorer than in comparable samples from Site 632. This reflects the deposition of proximal, low-energy turbidity currents and debris flows on a base-ofslope carbonate apron. No mud-supported debris-flow sheets were deposited in the investigated sediment sequence of Hole 632A. Many larger turbidity currents from around the margins of Exuma Sound may have reached this central basin setting, depositing sediments that had been transported over longer distances. Planktonic components dominate in the grain-sized fraction (500-1000 µm) of turbidite samples from Hole 628A, while platform detritus is rare. We interpreted this as resulting from the erosion and reworking of a large area of open-ocean slope sediments by gravity flows. In contrast, large amounts of benthic and platform components were found in the turbidite samples of Hole 632A. This may be explained by the fact that the slopes of the enclosed Exuma Sound are steep, and turbidity currents bypassed much of these slopes through pronounced channels, delivering more shallow-water detritus to the deep basin. Erosion of slope sediments, a possible source area of planktonic detritus, is assumed to be low. The small slope area in relation to the larger surrounding platform areas and lower production of planktonic components in the enclosed waters of Exuma Sound may also explain the observed low number of planktonic components at Hole 632A. Turbidite material from both open-ocean and enclosed-basin environments was deposited at Site 635.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seven hundred and nineteen samples from throughout the Cainozoic section in CRP-3 were analysed by a Malvern Mastersizes laser particle analyser, in order to derive a stratigraphic distribution of grain-size parameters downhole. Entropy analysis of these data (using the method of Woolfe & Michibayashi, 1995) allowed recognition of four groups of samples, each group characterised by a distinctive grain-size distribution. Group 1, which shows a multi-modal distribution, corresponds to mudrocks, interbedded mudrock/sandstone facies, muddy sandstones and diamictites. Group 2, with a sand-grade mode but showing wide dispersion of particle size, corresponds to muddy sandstones, a few cleaner sandstones and some conglomerates. Group 3 and Group 4 are also sand-dominated, with better grain-size sorting, and correspond to clean, well-washed sandstones of varying mean grain-size (medium and fine modes, respectively). The downhole disappearance of Group 1, and dominance of Groups 3 and 4 reflect a concomitant change from mudrock- and diamictite-rich lithology to a section dominated by clean, well-washed sandstones with minor conglomerates. Progressive downhole increases in percentage sand and principal mode also reflect these changes. Significant shifts in grain-size parameters and entropy group membership were noted across sequence boundaries and seismic reflectors, as recognised in other studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present excess Ba (Baxs) data (i.e., total Ba corrected for lithogenic Ba) for surface sediments from a north-south transect between the Polar Front Zone and the northern Weddell Gyre in the Atlantic sector and between the Polar Front Zone and the Antarctic continent in the Indian sector. Focus is on two different processes that affect excess Ba accumulation in the sediments: sediment redistribution and excess Ba dissolution. The effect of these processes needs to be corrected for in order to convert accumulation rate into vertical rain rate, the flux component that can be linked to export production. In the Southern Ocean a major process affecting Ba accumulation rate is sediment focusing, which is corrected for using excess 230Th. This correction, however, may not always be straightforward because of boundary scavenging effects. A further major process affecting excess Ba accumulation is barite dissolution during exposure at the sediment-water column interface. Export production estimates derived from excess 230Th and barite dissolution corrected Baxs accumulation rates (i.e., excess Ba vertical rain rates) are of the same magnitude but generally larger than export production estimates based on water column proxies (234Th-deficit in the upper water column; particulate excess Ba enrichment in the mesopelagic water column). We believe export production values based on excess Ba vertical rain rate might be overestimated due to inaccurate assessment of the Baxs preservation rate. Barite dissolution has, in general, been taken into account by relating it to exposure time before burial depending on the rate of sediment accumulation. However, the observed decrease of excess Ba content with increasing water column depth (or increasing hydrostatic pressure) illustrates the dependence of barite preservation on degree of saturation in the deep water column in accordance with available thermodynamic data. Therefore correction for barite dissolution would not be appropriate by considering only exposure time of the barite to some uniformly undersaturated deep water but requires also that regional differences in degree of undersatuation be taken into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two shelf and upper-slope sites (681 and 686) near present cores of active coastal upwelling on the Peruvian margin were sampled continuously at 7.5 cm intervals down to approximately 25 meters below the seafloor (mbsf). Sedimentary structures were subdivided into homogeneous/bioturbated, laminated, and laminated-varved intervals. Diatom analysis and statistical treatment of data revealed almost persistent upwelling over the last 400,000 yr, with slightly increased upwelling during oxygen-isotope Stages 3, 5, 7, and 8 that resulted in anoxic bottom-water conditions and deposition of laminated/undisturbed primary sedimentary structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lysocline reconstructions play an important role in scenarios purporting to explain the lowered atmospheric CO2 content of glacial time. These reconstructions are based on indicators such as the CaCO3 content, the percent of coarse fraction, the ratio of fragments to whole foraminifera shells, the ratio of solution-susceptible to solution-resistant species, and the ratio of coarse to fine CaCO3. All assume that changes with time in the composition of the input material do not bias the result. However, as the composition of the input material does depend on climate, none of these indicators provides an absolute measure of the extent of dissolution. In this paper we evaluate the reliability of the ratio of >63 µm CaCO3 to total CaCO3 as a dissolution indicator. We present here results that suggest that in today's tropics this ratio appears to be determined solely by CO3= ion concentration and water depth (i.e., the saturation state of bottom waters). This finding offers the possibility that the size fraction index can be used to reconstruct CO3= ion concentrations for the late Quaternary ocean to an accuracy of ±5 µmol/kg.