902 resultados para Distributed computer-controlled systems
Resumo:
Edited book to support level 3 undergraduate understanding.
Resumo:
User interaction within a virtual environment may take various forms: a teleconferencing application will require users to speak to each other (Geak, 1993), with computer supported co-operative working; an Engineer may wish to pass an object to another user for examination; in a battle field simulation (McDonough, 1992), users might exchange fire. In all cases it is necessary for the actions of one user to be presented to the others sufficiently quickly to allow realistic interaction. In this paper we take a fresh look at the approach of virtual reality operating systems by tackling the underlying issues of creating real-time multi-user environments.
Resumo:
Distributed and collaborative data stream mining in a mobile computing environment is referred to as Pocket Data Mining PDM. Large amounts of available data streams to which smart phones can subscribe to or sense, coupled with the increasing computational power of handheld devices motivates the development of PDM as a decision making system. This emerging area of study has shown to be feasible in an earlier study using technological enablers of mobile software agents and stream mining techniques [1]. A typical PDM process would start by having mobile agents roam the network to discover relevant data streams and resources. Then other (mobile) agents encapsulating stream mining techniques visit the relevant nodes in the network in order to build evolving data mining models. Finally, a third type of mobile agents roam the network consulting the mining agents for a final collaborative decision, when required by one or more users. In this paper, we propose the use of distributed Hoeffding trees and Naive Bayes classifers in the PDM framework over vertically partitioned data streams. Mobile policing, health monitoring and stock market analysis are among the possible applications of PDM. An extensive experimental study is reported showing the effectiveness of the collaborative data mining with the two classifers.
Resumo:
Pocket Data Mining (PDM) describes the full process of analysing data streams in mobile ad hoc distributed environments. Advances in mobile devices like smart phones and tablet computers have made it possible for a wide range of applications to run in such an environment. In this paper, we propose the adoption of data stream classification techniques for PDM. Evident by a thorough experimental study, it has been proved that running heterogeneous/different, or homogeneous/similar data stream classification techniques over vertically partitioned data (data partitioned according to the feature space) results in comparable performance to batch and centralised learning techniques.
Resumo:
The P-found protein folding and unfolding simulation repository is designed to allow scientists to perform data mining and other analyses across large, distributed simulation data sets. There are two storage components in P-found: a primary repository of simulation data that is used to populate the second component, and a data warehouse that contains important molecular properties. These properties may be used for data mining studies. Here we demonstrate how grid technologies can support multiple, distributed P-found installations. In particular, we look at two aspects: firstly, how grid data management technologies can be used to access the distributed data warehouses; and secondly, how the grid can be used to transfer analysis programs to the primary repositories — this is an important and challenging aspect of P-found, due to the large data volumes involved and the desire of scientists to maintain control of their own data. The grid technologies we are developing with the P-found system will allow new large data sets of protein folding simulations to be accessed and analysed in novel ways, with significant potential for enabling scientific discovery.
Resumo:
The Mobile Network Optimization (MNO) technologies have advanced at a tremendous pace in recent years. And the Dynamic Network Optimization (DNO) concept emerged years ago, aimed to continuously optimize the network in response to variations in network traffic and conditions. Yet, DNO development is still at its infancy, mainly hindered by a significant bottleneck of the lengthy optimization runtime. This paper identifies parallelism in greedy MNO algorithms and presents an advanced distributed parallel solution. The solution is designed, implemented and applied to real-life projects whose results yield a significant, highly scalable and nearly linear speedup up to 6.9 and 14.5 on distributed 8-core and 16-core systems respectively. Meanwhile, optimization outputs exhibit self-consistency and high precision compared to their sequential counterpart. This is a milestone in realizing the DNO. Further, the techniques may be applied to similar greedy optimization algorithm based applications.
Resumo:
The evolution of commodity computing lead to the possibility of efficient usage of interconnected machines to solve computationally-intensive tasks, which were previously solvable only by using expensive supercomputers. This, however, required new methods for process scheduling and distribution, considering the network latency, communication cost, heterogeneous environments and distributed computing constraints. An efficient distribution of processes over such environments requires an adequate scheduling strategy, as the cost of inefficient process allocation is unacceptably high. Therefore, a knowledge and prediction of application behavior is essential to perform effective scheduling. In this paper, we overview the evolution of scheduling approaches, focusing on distributed environments. We also evaluate the current approaches for process behavior extraction and prediction, aiming at selecting an adequate technique for online prediction of application execution. Based on this evaluation, we propose a novel model for application behavior prediction, considering chaotic properties of such behavior and the automatic detection of critical execution points. The proposed model is applied and evaluated for process scheduling in cluster and grid computing environments. The obtained results demonstrate that prediction of the process behavior is essential for efficient scheduling in large-scale and heterogeneous distributed environments, outperforming conventional scheduling policies by a factor of 10, and even more in some cases. Furthermore, the proposed approach proves to be efficient for online predictions due to its low computational cost and good precision. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In chemical analyses performed by laboratories, one faces the problem of determining the concentration of a chemical element in a sample. In practice, one deals with the problem using the so-called linear calibration model, which considers that the errors associated with the independent variables are negligible compared with the former variable. In this work, a new linear calibration model is proposed assuming that the independent variables are subject to heteroscedastic measurement errors. A simulation study is carried out in order to verify some properties of the estimators derived for the new model and it is also considered the usual calibration model to compare it with the new approach. Three applications are considered to verify the performance of the new approach. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
BACKGROUND: Reminder systems in electronic patient records (EPR) have proven to affect both health care professionals' behaviour and patient outcomes. The aim of this cluster randomised trial was to investigate the effects of implementing a clinical practice guideline (CPG) for peripheral venous catheters (PVCs) in paediatric care in the format of reminders integrated in the EPRs, on PVC-related complications, and on registered nurses' (RNs') self-reported adherence to the guideline. An additional aim was to study the relationship between contextual factors and the outcomes of the intervention. METHODS: The study involved 12 inpatient units at a paediatric university hospital. The reminders included choice of PVC, hygiene, maintenance, and daily inspection of PVC site. Primary outcome was documented signs and symptoms of PVC-related complications at removal, retrieved from the EPR. Secondary outcome was RNs' adherence to a PVC guideline, collected through a questionnaire that also included RNs' perceived work context, as measured by the Alberta Context Tool. Units were allocated into two strata, based on occurrence of PVCs. A blinded simple draw of lots from each stratum randomised six units to the control and intervention groups, respectively. Units were not blinded. The intervention group included 626 PVCs at baseline and 618 post-intervention and the control group 724 PVCs at baseline and 674 post-intervention. RNs included at baseline were 212 (65.4 %) and 208 (71.5 %) post-intervention. RESULTS: No significant effect was found for the computer reminders on PVC-related complications nor on RNs' adherence to the guideline recommendations. The complication rate at baseline and post-intervention was 40.6 % (95 % confidence interval (CI) 36.7-44.5) and 41.9 % (95 % CI 38.0-45.8), for the intervention group and 40.3 % (95 % CI 36.8-44.0) and 46.9 % (95 % CI 43.1-50.7) for the control. In general, RNs' self-rated work context varied from moderately low to moderately high, indicating that conditions for a successful implementation to occur were less optimal. CONCLUSIONS: The reminders might have benefitted from being accompanied by a tailored intervention that targeted specific barriers, such as the low frequency of recorded reasons for removal, the low adherence to daily inspection of PVC sites, and the lack of regular feedback to the RNs. TRIAL REGISTRATION: Current Controlled Trials ISRCTN44819426.
Resumo:
The aim of this study was to develop multiparticulate therapeutic systems of alginate (AL) and chitosan (CS) containing triamcinolone (TC) to colonic drug delivery. Multiparticulate systems of AL-CS, prepared by a complex coacervation/ionotropic gelation method, were characterized for morphological and size aspects, swelling degree, encapsulation content and efficiency, in vitro release profile in different environments simulating the gastrointestinal tract (GIT) and in vivo gastrointestinal transit. The systems showed suitable morphological characteristics with particle diameters of approximately 1.6 mm. In simulated gastric environment, at pH 1.2, the capsules presented low degree of swelling and in vitro release of drug. A higher swelling degree was observed in simulated enteric environment, pH 7.5, followed by erosion. Practically all the drug was released after 6 h of in vitro assay. The in vivo analysis of gastrointestinal transit, carried out in rats, showed that the systems passed practically intact through the stomach and did not show the same profile of swelling observed in the in vitro tests. It was possible to verify the presence of capsules in the colonic region of GIT. The results indicate that AL-CS multiparticulate systems can be used as an adjuvant for the preparation of therapeutic systems to colonic delivery of drugs. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper aims to present, using a set of guidelines, how to apply the conservative distributed simulation paradigm (CMB protocol) to develop efficient applications. Using these guidelines, even a user with little experience on distributed simulation and computer architecture can have good performance on distributed simulations using conservative synchronization protocols for parallel processes.The set of guidelines is focus on a specific application domain, the performance evaluation of computer systems, considering models with coarse granularity and few logical processes and running over two platforms: parallel (high performance communication environment) and distributed (low performance communication environment).
Resumo:
To simplify computer management, various administration systems based on wired connections adopt advanced techniques to manage software configuration. Nevertheless, the strong relation between hardware and software makes for an individualism of that management, besides penalizing computational mobility and ubiquity. All these issues lead to degradation of scalability, flexibility and the facility to install and maintain distributed applications. This article presents an environment for centralized wireless communication network management, named WSE-OS (Wireless Sharing Environment - Operating Systems): a model based on Virtual Desktop Infrastructure (VDI) which associates virtualization techniques and safe remote access systems to create a distributed architecture as a base for a managing system. WSE-OS is capable of accomplishing the replication of operating system images using wireless communication network, besides offering abstraction of hardware to its clients, making the management more flexible and independent of wired connections. Results obtained from this work indicate that WSE-OS allows disseminating, through a single software configuration, the execution of data related to operating system images in client computers. WSE-OS can also be used as a management tool for operating systems in a wireless network.
Resumo:
In this paper an efficient algorithm for probabilistic analysis of unbalanced three-phase weakly-meshed distribution systems is presented. This algorithm uses the technique of Two-Point Estimate Method for calculating the probabilistic behavior of the system random variables. Additionally, the deterministic analysis of the state variables is performed by means of a Compensation-Based Radial Load Flow (CBRLF). Such load flow efficiently exploits the topological characteristics of the network. To deal with distributed generation, a strategy to incorporate a simplified model of a generator in the CBRLF is proposed. Thus, depending on the type of control and generator operation conditions, the node with distributed generation can be modeled either as a PV or PQ node. To validate the efficiency of the proposed algorithm, the IEEE 37 bus test system is used. The probabilistic results are compared with those obtained using the Monte Carlo method.