959 resultados para Distributed Material Flow Control
Resumo:
The spray zone is an important region to control nucleation of granules in a high shear granulator. In this study, a spray zone with cross flow is quantified as a well-mixed compartment in a high shear granulator. Granulation kinetics is quantitatively derived at both particle-scale and spray zone-scale. Two spatial decay rates, DGSDR (droplet-granule spatial decay rate) ζDG and DPSDR (droplet-primary particle spatial decay rate) ζDP, which are functions of volume fraction and diameter of particulate species within the powder bed, are defined to simplify the deduction. It is concluded that in cross flow, explicit analytical results show that the droplet concentration is subject to exponential decay with depth which produces a numerically infinite depth of spray zone in a real penetration process. In a well-mixed spray zone, the depth of the spray zone is 4/(ζDG + ζDP) and π2/3(ζDG + ζDP) in cuboid and cylinder shape, respectively. The first-order droplet-based collision rates of, nucleation rate B0 and rewetting rate RW0 are uncorrelated with the flow pattern and shape of the spray zone. The second-order droplet-based collision rate, nucleated granule-granule collision rate RGG, is correlated with the mixing pattern. Finally, a real formulation case of a high shear granulation process is used to estimate the size of the spray zone. The results show that the spray zone is a thin layer at the powder bed surface. We present, for the first time, the spray zone as a well-mixed compartment. The granulation kinetics of a well-mixed spray zone could be integrated into a Population Balance Model (PBM), particularly to aid development of a distributed model for product quality prediction.
Resumo:
Access control (AC) is a necessary defense against a large variety of security attacks on the resources of distributed enterprise applications. However, to be effective, AC in some application domains has to be fine-grain, support the use of application-specific factors in authorization decisions, as well as consistently and reliably enforce organization-wide authorization policies across enterprise applications. Because the existing middleware technologies do not provide a complete solution, application developers resort to embedding AC functionality in application systems. This coupling of AC functionality with application logic causes significant problems including tremendously difficult, costly and error prone development, integration, and overall ownership of application software. The way AC for application systems is engineered needs to be changed. ^ In this dissertation, we propose an architectural approach for engineering AC mechanisms to address the above problems. First, we develop a framework for implementing the role-based access control (RBAC) model using AC mechanisms provided by CORBA Security. For those application domains where the granularity of CORBA controls and the expressiveness of RBAC model suffice, our framework addresses the stated problem. ^ In the second and main part of our approach, we propose an architecture for an authorization service, RAD, to address the problem of controlling access to distributed application resources, when the granularity and support for complex policies by middleware AC mechanisms are inadequate. Applying this architecture, we developed a CORBA-based application authorization service (CAAS). Using CAAS, we studied the main properties of the architecture and showed how they can be substantiated by employing CORBA and Java technologies. Our approach enables a wide-ranging solution for controlling the resources of distributed enterprise applications. ^
Resumo:
Long-term management plans for restoration of natural flow conditions through the Everglades increase the importance of understanding potential nutrient impacts of increased freshwater delivery on Florida Bay biogeochemistry. Planktonic communities respond quickly to changes in water quality, thus spatial variability in community composition and relationships to nutrient parameters must be understood in order to evaluate future downstream impacts of modifications to Everglades hydrology. Here we present initial results combining flow cytometry analyses of phytoplankton and bacterial populations (0.1–50 μm size fraction) with measurements of δ13C and δ15N composition and dissolved inorganic nutrient concentrations to explore proxies for planktonic species assemblage compositions and nutrient cycling. Particulate organic material in the 0.1–50 μm size fraction was collected from five stations in Northeastern and Western Florida Bay to characterize spatial variability in species assemblage and stable isotopic composition. A dense bloom of the picocyanobacterium, Synechococcus elongatus, was observed at Western Florida Bay sites. Smaller Synechococcus sp. were present at Northeast sites in much lower abundance. Bacteria and detrital particles were also more abundant at Western Florida Bay stations than in the northeast region. The highest abundance of detritus occurred at Trout Creek, which receives freshwater discharge from the Everglades through Taylor Slough. In terms of nutrient availability and stable isotopic values, the S. elongatus population in the Western bay corresponded to low DIN (0.5 μM NH 4 + ; 0.2 μM NO 3 − ) concentrations and depleted δ15N signatures ranging from +0.3 to +0.8‰, suggesting that the bloom supported high productivity levels through N2-fixation. δ15N values from the Northeast bay were more enriched (+2.0 to +3.0‰), characteristic of N-recycling. δ13C values were similar for all marine Florida Bay stations, ranging from −17.6 to −14.4‰, however were more depleted at the mangrove ecotone station (−25.5 to −22.3‰). The difference in the isotopic values reflects differences in carbon sources. These findings imply that variations in resource availability and nutrient sources exert significant control over planktonic community composition, which is reflected by stable isotopic signatures.
Resumo:
The future power grid will effectively utilize renewable energy resources and distributed generation to respond to energy demand while incorporating information technology and communication infrastructure for their optimum operation. This dissertation contributes to the development of real-time techniques, for wide-area monitoring and secure real-time control and operation of hybrid power systems. ^ To handle the increased level of real-time data exchange, this dissertation develops a supervisory control and data acquisition (SCADA) system that is equipped with a state estimation scheme from the real-time data. This system is verified on a specially developed laboratory-based test bed facility, as a hardware and software platform, to emulate the actual scenarios of a real hybrid power system with the highest level of similarities and capabilities to practical utility systems. It includes phasor measurements at hundreds of measurement points on the system. These measurements were obtained from especially developed laboratory based Phasor Measurement Unit (PMU) that is utilized in addition to existing commercially based PMU’s. The developed PMU was used in conjunction with the interconnected system along with the commercial PMU’s. The tested studies included a new technique for detecting the partially islanded micro grids in addition to several real-time techniques for synchronization and parameter identifications of hybrid systems. ^ Moreover, due to numerous integration of renewable energy resources through DC microgrids, this dissertation performs several practical cases for improvement of interoperability of such systems. Moreover, increased number of small and dispersed generating stations and their need to connect fast and properly into the AC grids, urged this work to explore the challenges that arise in synchronization of generators to the grid and through introduction of a Dynamic Brake system to improve the process of connecting distributed generators to the power grid.^ Real time operation and control requires data communication security. A research effort in this dissertation was developed based on Trusted Sensing Base (TSB) process for data communication security. The innovative TSB approach improves the security aspect of the power grid as a cyber-physical system. It is based on available GPS synchronization technology and provides protection against confidentiality attacks in critical power system infrastructures. ^
Resumo:
Access control (AC) is a necessary defense against a large variety of security attacks on the resources of distributed enterprise applications. However, to be effective, AC in some application domains has to be fine-grain, support the use of application-specific factors in authorization decisions, as well as consistently and reliably enforce organization-wide authorization policies across enterprise applications. Because the existing middleware technologies do not provide a complete solution, application developers resort to embedding AC functionality in application systems. This coupling of AC functionality with application logic causes significant problems including tremendously difficult, costly and error prone development, integration, and overall ownership of application software. The way AC for application systems is engineered needs to be changed. In this dissertation, we propose an architectural approach for engineering AC mechanisms to address the above problems. First, we develop a framework for implementing the role-based access control (RBAC) model using AC mechanisms provided by CORBA Security. For those application domains where the granularity of CORBA controls and the expressiveness of RBAC model suffice, our framework addresses the stated problem. In the second and main part of our approach, we propose an architecture for an authorization service, RAD, to address the problem of controlling access to distributed application resources, when the granularity and support for complex policies by middleware AC mechanisms are inadequate. Applying this architecture, we developed a CORBA-based application authorization service (CAAS). Using CAAS, we studied the main properties of the architecture and showed how they can be substantiated by employing CORBA and Java technologies. Our approach enables a wide-ranging solution for controlling the resources of distributed enterprise applications.
Resumo:
O jornalismo é um dos principais meios de oferta de temas para a discussão e formação da opinião pública, porém depende de um sistema técnico para ser transmitido. Durante mais de cem anos as informações produzidas pela imprensa foram emitidas, armazenadas, transmitidas e recebidas pelos chamados veículos de comunicação de massa que utilizam a rede centralizada cujas características estão na escassez material, produção em série e massificação. Esse sistema separa no tempo e no espaço emissores e receptores criando uma relação desigual de força em que as grandes empresas controlaram o fluxo informativo, definindo quais fatos seriam veiculados como notícia. Em 1995, a internet cuja informação circula sob a tecnologia da rede distribuída, foi apropriada pela sociedade, alterando a forma de produção, armazenamento e transmissão de informação. A tecnologia despertou a esperança de que esta ferramenta poderia proporcionar uma comunicação mais dialógica e democrática. Mas aos poucos pode-se perceber novas empresas se apropriando da tecnologia da rede distribuída sob a qual circula a internet, gerando um novo controle do fluxo informativo. Realizou-se nessa pesquisa um levantamento bibliográfico para estabelecer uma reflexão crítica dos diferentes intermediários entre fato e a notícia tanto da rede centralizada como na rede distribuída, objetivando despertar uma discussão que possa oferecer novas ideias para políticas, bem como alternativas para uma comunicação mais democrática e mais libertária.
Resumo:
This project is funded by European Research Council in FP7; grant no 259328, 2010 and EPSRC grant no EP/K006428/1, 2013.
Resumo:
This project is funded by European Research Council in FP7; grant no 259328, 2010 and EPSRC grant no EP/K006428/1, 2013.
Resumo:
Peer reviewed
Resumo:
Germanium (Ge) nanowires are of current research interest for high speed nanoelectronic devices due to the lower band gap and high carrier mobility compatible with high K-dielectrics and larger excitonic Bohr radius ensuing a more pronounced quantum confinement effect [1-6]. A general way for the growth of Ge nanowires is to use liquid or a solid growth promoters in a bottom-up approach which allow control of the aspect ratio, diameter, and structure of 1D crystals via external parameters, such as precursor feedstock, temperature, operating pressure, precursor flow rate etc [3, 7-11]. The Solid-phase seeding is preferred for more control processing of the nanomaterials and potential suppression of the unintentional incorporation of high dopant concentrations in semiconductor nanowires and unrequired compositional tailing of the seed-nanowire interface [2, 5, 9, 12]. There are therefore distinct features of the solid phase seeding mechanism that potentially offer opportunities for the controlled processing of nanomaterials with new physical properties. A superior control over the growth kinetics of nanowires could be achieved by controlling the inherent growth constraints instead of external parameters which always account for instrumental inaccuracy. The high dopant concentrations in semiconductor nanowires can result from unintentional incorporation of atoms from the metal seed material, as described for the Al catalyzed VLS growth of Si nanowires [13] which can in turn be depressed by solid-phase seeding. In addition, the creation of very sharp interfaces between group IV semiconductor segments has been achieved by solid seeds [14], whereas the traditionally used liquid Au particles often leads to compositional tailing of the interface [15] . Korgel et al. also described the superior size retention of metal seeds in a SFSS nanowire growth process, when compared to a SFLS process using Au colloids [12]. Here in this work we have used silver and alloy seed particle with different compositions to manipulate the growth of nanowires in sub-eutectic regime. The solid seeding approach also gives an opportunity to influence the crystallinity of the nanowires independent of the substrate. Taking advantage of the readily formation of stacking faults in metal nanoparticles, lamellar twins in nanowires could be formed.
Resumo:
Continuous-flow generation of α-diazosulfoxides results in a two- to three-fold increase in yields and decreased reaction times compared to standard batch synthesis methods. These high yielding reactions are enabled by flowing through a bed of polystyrene-supported base (PS-DBU or PS-NMe2) with highly controlled residence times. This engineered solution allows the α-diazosulfoxides to be rapidly synthesized while limiting exposure of the products to basic reaction conditions, which have been found to cause rapid decomposition. In addition to improved yields, this work has the added advantage of ease of processing, increased safety profile, and scale-up potential.
Resumo:
Mineral and chemical composition of alluvial Upper-Pleistocene deposits from the Alto Guadalquivir Basin (SE Spain) were studied as a tool to identify sedimentary and geomorphological processes controlling its formation. Sediments located upstream, in the north-eastern sector of the basin, are rich in dolomite, illite, MgO and KB2BO. Downstream, sediments at the sequence base are enriched in calcite, smectite and CaO, whereas the upper sediments have similar features to those from upstream. Elevated rare-earth elements (REE) values can be related to low carbonate content in the sediments and the increase of silicate material produced and concentrated during soil formation processes in the neighbouring source areas. Two mineralogical and geochemical signatures related to different sediment source areas were identified. Basal levels were deposited during a predominantly erosive initial stage, and are mainly composed of calcite and smectite materials enriched in REE coming from Neogene marls and limestones. Then the deposition of the upper levels of the alluvial sequences, made of dolomite and illitic materials depleted in REE coming from the surrounding Sierra de Cazorla area took place during a less erosive later stage of the fluvial system. Such modification was responsible of the change in the mineralogical and geochemical composition of the alluvial sediments.
Resumo:
Combined conduction–convection–radiation heat transfer is investigated numerically in a micro-channel filled with a saturated cellular porous medium, with the channel walls held at a constant heat flux. Invoking the velocity slip and temperature jump, the thermal behaviour of the porous–fluid system are studied by considering hydrodynamically fully developed flow and applying the Darcy–Brinkman flow model. One energy equation model based on the local thermal equilibrium condition is adopted to evaluate the temperature field within the porous medium. Combined conduction and radiation heat transfer is treated as an effective conduction process with a temperature-dependent effective thermal conductivity. Results are reported in terms of the average Nusselt number and dimensionless temperature distribution, as a function of velocity slip coefficient, temperature jump coefficient, porous medium shape parameter and radiation parameters. Results show that increasing the radiation parameter (Tr)(Tr) and the temperature jump coefficient flattens the dimensionless temperature profile. The Nusselt numbers are more sensitive to the variation in the temperature jump coefficient rather than to the velocity slip coefficient. Such that for high porous medium shape parameter, the Nusselt number is found to be independent of velocity slip. Furthermore, it is found that as the temperature jump coefficient increases, the Nusselt number decrease. In addition, for high temperature jump coefficients, the Nusselt number is found to be insensitive to the radiation parameters and porous medium shape parameter. It is also concluded that compared with the conventional macro-channels, wherein using a porous material enhances the rate of heat transfer (up to about 40 % compared to the clear channel), insertion of a porous material inside a micro-channel in slip regime does not effectively enhance the rate of heat transfer that is about 2 %.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Abstract not available