944 resultados para Diode array UV spectroscopy
Resumo:
We report on a theoretical study of an interferometric system in which half of a collimated beam from a broadband optical source is intercepted by a glass slide, the whole beam subsequently being incident on a diffraction grating and the resulting spectrum being viewed using a linear CCD array. Using Fourier theory, we derive the expression of the intensity distribution across the CCD array. This expression is then examined for non-cavity and cavity sources for different cases determined by the direction from which the slide is inserted into the beam and the source bandwidth. The theoretical model shows that the narrower the source linewidth, the higher the deviation of the Talbot bands' visibility (as it is dependent on the path imbalance) from the previously known triangular shape. When the source is a laser diode below threshold, the structure of the CCD signal spectrum is very complex. The number of components present simultaneously increases with the number of grating lines and decreases with the laser cavity length. The model also predicts the appearance of bands in situations not usually associated with Talbot bands.
Resumo:
Summary form only given. Broadly tunable compact visible laser sources in the spectral region of 500-650 nm are valuable in biophotonics, photomedicine and for many applications including spectroscopy, laser projection and confocal microscopy. Unfortunately, commercially available lasers of this spectral range are in practice bulky and inconvenient in use. An attractive method for the realization of portable visible laser sources is the frequency-doubling of the infrared laser diodes in a nonlinear crystal containing a waveguide [1]. Nonlinear crystal waveguides that offer an order-of-magnitude increase in the IR-to-visible conversion efficiency also enable a very different approach to second-harmonic generation (SHG) tunability in periodically-poled crystals, promising order-of-magnitude increase of wavelength range for SHG conversion. This is possible by utilization of a significant difference in the effective refractive indices of the high-order and low-order modes in multimode waveguides [2]. The recent availability of low-cost, good quality semiconductor diode lasers, offering the coverage of a broad spectral range between 1 µ?? and 1.3 µp? [3,4], in combination with well-established techniques to fabricate good quality waveguides in nonlinear crystals, allows compact tunable CW laser sources in the visible spectral region to be realized [2].
Resumo:
The THz optoelectronics field is now maturing and semiconductor-based THz antenna devices are becoming more widely implemented as analytical tools in spectroscopy and imaging. Photoconductive (PC) THz switches/antennas are driven optically typically using either an ultrashort-pulse laser or an optical signal composed of two simultaneous longitudinal wavelengths which are beat together in the PC material at a THz difference frequency. This allows the generation of (photo)carrier pairs which are then captured over ultrashort timescales usually by defects and trapping sites throughout the active material lattice. Defect-implanted PC materials with relatively high bandgap energy are typically used and many parameters such as carrier mobility and PC gain are greatly compromised. This paper demonstrates the implementation of low bandgap energy InAs quantum dots (QDs) embedded in standard crystalline GaAs as both the PC medium and the ultrafast capture mechanism in a PC THz antenna. This semiconductor structure is grown using standard MBE methods and allows the device to be optically driven efficiently at wavelengths up to ~1.3 µm, in this case by a single tunable dual-mode QD diode laser.
Resumo:
Preliminary results are given for a long period grating sensing array scheme based upon a derivative spectroscopy interrogation technique for Human Respiratory Plethysmography with simultaneous measurements of a spirometer, reasonable agreement with recorded volumetric changes was found.
Resumo:
In this paper, multiplexed sensor network capable of monitoring the shape changes of the torso for respiratory function monitoring is developed. As a demonstration, LPGs written into refractive index insensitive, progressive three layered fibre are embedded into supporting material is then placed on a resuscitation training manikin simulating respiration. A derivative spectroscopy interrogation technique is implemented and the bend sensitivity of the LPGs is used to reconstruct the shape of the manikin's torso. © 2003 IEEE.
Resumo:
Photodynamic therapy (PDT) consists of a non-toxic photosensitizing agent (FS) administration followed by a laser source resulting in a sequence of photochemical and photobiological processes that generate reactive oxygen species (ROS) that damaging cells. The present work evaluated the effects of PDT nanoemulsion-aluminum chloride phthalocyanine (AlClFc) mediated on malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels, which represent indicators involved in oxidative stress and antioxidant defenses. For this purpose, this study used 120 female rats of the Rattus norvegicus species, Wistar race, divided into 5 groups: Healthy (H), with periodontal disease (PD), with periodontal disease and treatment with FS (F), with periodontal disease and treatment with the laser (L); and periodontal disease and treatment with PDT (FL). An experimental model for represent periodontal disease (PD) was induced by ligature (split-mouth). Seven days later the induction of PD, the treatments were instituted according to the groups. In the group treated with PDT was applied 40μl FS (5μM) followed by laser irradiation diode InGaAlP (660nm, 100J / cm2). The rats were sacrificed on the 7th and 28th day after treatment and tissue specimens were removed and subjected to histological, immunohistochemical methods and enzymatic colorimetric measurements with detection by UV / VIS spectroscopy. Inflammatory changes, connective tissue disorganization and alveolar bone loss were displaying in groups with PD induced. The enzyme dosages showed that MDA levels were higher in PD induced groups, with no statistically significant differences (p> 0.05). High levels of GSH were found in groups L (p = 0.028) and FL (p = 0.028) compared with PD group, with statistically significant differences. Immunohistochemistry for SOD showed higher immunostaining in L and FL groups, compared to the PD group without statistically significant differences (p> 0.05). GPx showed lower immunoreactivity in the DP group when compared to the other groups and statistically significant differences were observed between the DPxL groups (p <0.05). TFD administered in this experiment did not induce elevation of MDA levels significantly increased the GSH levels and showed intense immunostaining pada SOD and GPx, showing that this therapy does not accentuated lipid peroxidation, however, it was able to induce effects on the antioxidant defenses processes. The LBI therapy appeared to show photomodulatory promoting effects reduction of the MDA levels, increasing GSH levels and with intense immunostaining for SOD and GPx, demonstrating that laser therapy induced antioxidant effects.
Resumo:
Ultraviolet (UV) nonionizing continuum and mid-infrared (IR) emission constitute the basis of two widely used star formation (SF) indicators at intermediate and high redshifts. We study 2430 galaxies with z < 1.4 in the Extended Groth Strip with deep MIPS 24 μm observations from FIDEL, spectroscopy from DEEP2, and UV, optical, and near-IR photometry from the AEGIS. The data are coupled with dust-reddened stellar population models and Bayesian spectral energy distribution (SED) fitting to estimate dust-corrected star formation rates (SFRs). In order to probe the dust heating from stellar populations of various ages, the derived SFRs were averaged over various timescales—from 100 Myr for "current" SFR (corresponding to young stars) to 1-3 Gyr for long-timescale SFRs (corresponding to the light-weighted age of the dominant stellar populations). These SED-based UV/optical SFRs are compared to total IR luminosities extrapolated from 24 μm observations, corresponding to 10-18 μm rest frame. The total IR luminosities are in the range of normal star-forming galaxies and luminous IR galaxies (10^10-10^12 L_☉). We show that the IR luminosity can be estimated from the UV and optical photometry to within a factor of 2, implying that most z < 1.4 galaxies are not optically thick. We find that for the blue, actively star-forming galaxies the correlation between the IR luminosity and the UV/optical SFR shows a decrease in scatter when going from shorter to longer SFR-averaging timescales. We interpret this as the greater role of intermediate age stellar populations in heating the dust than what is typically assumed. Equivalently, we observe that the IR luminosity is better correlated with dust-corrected optical luminosity than with dust-corrected UV light. We find that this holds over the entire redshift range. Many so-called green valley galaxies are simply dust-obscured actively star-forming galaxies. However, there exist 24 μm detected galaxies, some with L_IR>10^11 L_☉, yet with little current SF. For them a reasonable amount of dust absorption of stellar light (but presumably higher than in nearby early-type galaxies) is sufficient to produce the observed levels of IR, which includes a large contribution from intermediate and old stellar populations. In our sample, which contains very few ultraluminous IR galaxies, optical and X-ray active galactic nuclei do not contribute on average more than ~50% to the mid-IR luminosity, and we see no evidence for a large population of "IR excess" galaxies.
Resumo:
Cu(acac)2 is chemisorbed on TiO2 particles [P-25 (anatase/rutile = 4/1 w/w), Degussa] via coordination by surface Ti–OH groups without elimination of the acac ligand. Post-heating of the Cu(acac)2-adsorbed TiO2 at 773 K yields molecular scale copper(II) oxide clusters on the surface (CuO/TiO2). The copper loading amount (Γ/Cu ions nm–2) is controlled in a wide range by the Cu(acac)2 concentration and the chemisorption–calcination cycle number. Valence band (VB) X-ray photoelectron and photoluminescence spectroscopy indicated that the VB maximum of TiO2 rises up with increasing Γ, while vacant midgap levels are generated. The surface modification gives rise to visible-light activity and concomitant significant increase in UV-light activity for the degradation of 2-naphthol and p-cresol. Prolonging irradiation time leads to the decomposition to CO2, which increases in proportion to irradiation time. The photocatalytic activity strongly depends on the loading, Γ, with an optimum value of Γ for the photocatalytic activity. Electrochemical measurements suggest that the surface CuO clusters promote the reduction of adsorbed O2. First principles density functional theory simulations clearly show that, at Γ < 1, unoccupied Cu 3d levels are generated in the midgap region, and at Γ > 1, the VB maximum rises and the unoccupied Cu 3d levels move to the conduction band minimum of TiO2. These results suggest that visible-light excitation of CuO/TiO2 causes the bulk-to-surface interfacial electron transfer at low coverage and the surface-to-bulk interfacial electron transfer at high coverage. We conclude that the surface CuO clusters enhance the separation of photogenerated charge carriers by the interfacial electron transfer and the subsequent reduction of adsorbed O2 to achieve the compatibility of high levels of visible and UV-light activities.
Resumo:
The study of III-nitride materials (InN, GaN and AlN) gained huge research momentum after breakthroughs in the production light emitting diodes (LEDs) and laser diodes (LDs) over the past two decades. Last year, the Nobel Prize in Physics was awarded jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura for inventing a new energy efficient and environmental friendly light source: blue light-emitting diode (LED) from III-nitride semiconductors in the early 1990s. Nowadays, III-nitride materials not only play an increasingly important role in the lighting technology, but also become prospective candidates in other areas, for example, the high frequency (RF) high electron mobility transistor (HEMT) and photovoltaics. These devices require the growth of high quality III-nitride films, which can be prepared using metal organic vapour phase epitaxy (MOVPE). The main aim of my thesis is to study and develop the growth of III-nitride films, including AlN, u-AlGaN, Si-doped AlGaN, and InAlN, serving as sample wafers for fabrication of ultraviolet (UV) LEDs, in order to replace the conventional bulky, expensive and environmentally harmful mercury lamp as new UV light sources. For application to UV LEDs, reducing the threading dislocation density (TDD) in AlN epilayers on sapphire substrates is a key parameter for achieving high-efficiency AlGaNbased UV emitters. In Chapter 4, after careful and systematic optimisation, a working set of conditions, the screw and edge type dislocation density in the AlN were reduced to around 2.2×108 cm-2 and 1.3×109 cm-2 , respectively, using an optimized three-step process, as estimated by TEM. An atomically smooth surface with an RMS roughness of around 0.3 nm achieved over 5×5 µm 2 AFM scale. Furthermore, the motion of the steps in a one dimension model has been proposed to describe surface morphology evolution, especially the step bunching feature found under non-optimal conditions. In Chapter 5, control of alloy composition and the maintenance of compositional uniformity across a growing epilayer surface were demonstrated for the development of u-AlGaN epilayers. Optimized conditions (i.e. a high growth temperature of 1245 °C) produced uniform and smooth film with a low RMS roughness of around 2 nm achieved in 20×20 µm 2 AFM scan. The dopant that is most commonly used to obtain n-type conductivity in AlxGa1-xN is Si. However, the incorporation of Si has been found to increase the strain relaxation and promote unintentional incorporation of other impurities (O and C) during Si-doped AlGaN growth. In Chapter 6, reducing edge-type TDs is observed to be an effective appoach to improve the electric and optical properties of Si-doped AlGaN epilayers. In addition, the maximum electron concentration of 1.3×1019 cm-3 and 6.4×1018 cm-3 were achieved in Si-doped Al0.48Ga0.52N and Al0.6Ga0.4N epilayers as measured using Hall effect. Finally, in Chapter 7, studies on the growth of InAlN/AlGaN multiple quantum well (MQW) structures were performed, and exposing InAlN QW to a higher temperature during the ramp to the growth temperature of AlGaN barrier (around 1100 °C) will suffer a significant indium (In) desorption. To overcome this issue, quasi-two-tempeature (Q2T) technique was applied to protect InAlN QW. After optimization, an intense UV emission from MQWs has been observed in the UV spectral range from 320 to 350 nm measured by room temperature photoluminescence.
Resumo:
Pulsatile, or “on-demand”, delivery systems have the capability to deliver a therapeutic molecule at the right time/site of action and in the right amount (1). Pulsatile delivery systems present multiple benefits over conventional dosage forms and provide higher patient compliance. The combination of stimuli-responsive materials with the drug delivery capabilities of hydrogel-forming MN arrays (2) opens an interesting area of research. In the present work we describe, a stimuli-responsive hydrogel-forming microneedle (MN) array that enable delivery of a clinically-relevant model drug (ibuprofen) upon application of UV radiation (Figure 1A). MN arrays were prepared using a micromolding technique using a polymer prepared from 2-hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethacrylate (EGDMA) (Figure 1B). The arrays were loaded with up to 5% (w/w) ibuprofen included in a light-responsible conjugate (3,5-dimethoxybenzoin conjugate) (2). The presence of the conjugate inside the MN arrays was confirmed by Raman spectroscopy measurements. MN arrays were tested in vitro showing that they were able to deliver up to three doses of 50 mg of ibuprofen after application of an optical trigger (wavelength of 365 nm) over a long period of time (up to 160 hours) (Figure 1C and 1D). The work presented here is a probe of concept and a modified version of the system should be used as UV radiation is shown to be the major etiologic agent in the development of skin cancers. Consequently, for future applications of this technology an alternative design should be developed. Based on the previous research dealing with hydrogel forming MN arrays a suitable strategy will be to use hydrogel-forming MN arrays containing a backing layer made with the material described in this work as the drug reservoir (2). Finally, a porous layer of a material that blocks UV radiation should be included between the MN array and the drug reservoir. Therefore radiation can be applied to the system without reaching the skin surface. Therefore after modification, the system described here interesting properties as “on-demand” release system for prolonged periods of time. This technology has potential for use in “on-demand” delivery of a wide range of drugs in a variety of applications relevant to enhanced patient care.
Resumo:
COMPASS is an experiment at CERN’s SPS whose goal is to study hadron structure and spectroscopy. The experiment includes a wide acceptance RICH detector, operating since 2001 and subject to a major upgrade of the central region of its photodetectors in 2006. The remaining 75% of the photodetection area are still using MWPCs from the original design, who suffer from limitations in gain due to aging of the photocathodes from ion bombardment and due to ion-induced instabilities. Besides the mentioned limitations, the increased luminosity conditions expected for the upcoming years of the experiment make an upgrade to the remaining detectors pertinent. This upgrade should be accomplished in 2016, using hybrid detectors composed of ThGEMs and MICROMEGAS. This work presents the study, development and characterization of gaseous photon detectors envisaging the foreseen upgrade, and the progress in production and evaluation techniques necessary to reach increasingly larger area detectors with the performances required. It includes reports on the studies performed under particle beam environment of such detectors. MPGD structures can also be used in a variety of other applications, of which nuclear medical imaging is a notorious example. This work includes, additionally, the initial steps in simulating, assembling and characterizing a prototype of a gaseous detector for application as a Compton Camera.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2015.
Resumo:
El aguacate (Persea americana Miller) es una conocida fruta arb´orea con un alto contenido nutricional que crece en varias partes del mundo. El presente estudio compara los espectros del UV-Vis y del espectr´ometro infrarrojo con transformada de Fourier (FTIR) de la fruta y de la hoja de aguacate (c´ascara, pulpa y aceite) cultivado en Ecuador y posteriormente eval´ua su actividad antioxidante empleando el 1,1-difenil-2-picrilhidrazil (DPPH•). El estudio de los espctros UV-Vis y FTIR revel´o que el aguacate tiene predominantemente flavonoides. Entre la hoja y el fruto del aguacate, se comprob´o mediante el ensayo DPPH• (captura de radicales libres), que la hoja tuvo una mayor actividad antioxidante, la que oscila entre 84,46% y 80,12%, con valores de 32.60-32.73 μg equivalentes de ´acido g´alico por mL. Se demostr´o que el orden de la actividad antioxidante de los extractos es: hoja de aguacate > c´ascara > aceite > pulpa. La actividad antioxidante tuvo una correlaci´on positiva con el contenido total de flavonoides y estos extractos de plantas (especialmente de las hojas del aguacate) son ´utiles para el desarrollo de futuros productos antioxidantes.
Resumo:
This thesis explores the potential of chiral plasmonic nanostructures for the ultrasensitive detection of protein structure. These nanostructures support the generation of fields with enhanced chirality relative to circularly polarised light and are an extremely incisive probe of protein structure. In chapter 4 we introduce a nanopatterned Au film (Templated Plasmonic Substrate, TPS) fabricated using a high through-put injection moulding technique which is a viable alternative to expensive lithographically fabricated nanostructures. The optical and chiroptical properties of TPS nanostructures are found to be highly dependent on the coupling between the electric and magnetic modes of the constituent solid and inverse structures. Significantly, refractive index based measurements of strongly coupled TPSs display a similar sensitivity to protein structure as previous lithographic nanostructures. We subsequently endeavour to improve the sensing properties of TPS nanostructures by developing a high through-put nanoscale chemical functionalisation technique. This process involves a chemical protection/deprotection strategy. The protection step generates a self-assembled monolayer (SAM) of a thermally responsive polymer on the TPS surface which inhibits protein binding. The deprotection step exploits the presence of nanolocalised thermal gradients in the water surrounding the TPS upon irradiation with an 8ns pulsed laser to modify the SAM conformation on surfaces with high net chirality. This allows binding of biomaterial in these regions and subsequently enhances the TPS sensitivity levels. In chapter 6 an alternative method for the detection of protein structure using TPS nanostructures is introduced. This technique relies on mediation of the electric/magnetic coupling in the TPS by the adsorbed protein. This phenomenon is probed through both linear reflectance and nonlinear second harmonic generation (SHG) measurements. Detection of protein structure using this method does not require the presence of fields of enhanced chirality whilst it is also sensitive to a larger array of secondary structure motifs than the measurements in chapters 4 and 5. Finally, a preliminary investigation into the detection of mesoscale biological structure is presented. Sensitivity to the mesoscale helical pitch of insulin amyloid fibrils is displayed through the asymmetry in the circular dichroism (CD) of lithographic gammadions of varying thickness upon adsorption of insulin amyloid fibril spherulites and fragmented fibrils. The proposed model for this sensitivity to the helical pitch relies on the vertical height of the nanostructures relative to this structural property as well as the binding orientation of the fibrils.
Resumo:
Raman spectra of chillagite, wulfenite, stolzite, scheelite and wolframite were obtained at 298 and 77 K using a Raman microprobe in combination with a thermal stage. Chillagite is a solid solution of wulfenite and stolzite. The spectra of these molybdate minerals are orientation dependent. The band at 695 cm-1 is interpreted as an antisymmetric bridging mode associated with the tungstate chain. The bands at 790 and 881 cm-1 are associated with the antisymmetric and symmetric Ag modes of terminal WO2 whereas the origin of the 806 cm-1 band remains unclear. The 4(Eg) band was absent for scheelite. The bands at 353 and 401 cm-1 are assigned as either deformation modes or as r(Bg) and (Ag) modes of terminal WO2. The band at 462 cm-1 has an equivalent band in the infrared at 455 cm-1 assigned as as(Au) of the (W2O4)n chain. The band at 508 cm-1 is assigned as sym(Bg) of the (W2O4)n chain.