957 resultados para Diffraction losses
Resumo:
In this paper, characterizing transmission losses according to their origin is carried out. Transmission loss is decomposed into three components. The first is due to the current flow from generators to loads. The second is due to the circulating current between generators. The third represents the contribution of network structure and controls to increasing or decreasing transmission losses. Analytical proofs of the proposed loss decomposition are presented along with methods of allocating each component to the parties contributing to it. Illustration on simple dc and ac systems is presented. Results of application of the proposed method compared with other methods are also presented.
Resumo:
The flexibility of the metal-organic framework Cu-2(OH)(C8H3O7S)(H2O)center dot 2H(2)O (Cu-SIP-3) toward reversible single-crystal to single-crystal transformations is demonstrated using in situ diffraction methods at variable temperature. At temperatures below a dehydration-induced phase transition (T < 370 K) the structure is confirmed as being hydrated. In the temperature range where the transition takes place (370 K < T < 405 K) no discrete, sharp Bragg peaks can be seen in the single-crystal X-ray diffraction pattern, indicating significant loss of long-range order. At temperatures higher than 405 K, the Bragg peaks return and the structure can be refined as dehydrated Cu-SIP-3. The loss of guest water molecules can be followed at temperatures below the phase transition giving insight into the mechanism of the dehydration. Addition of nitric oxide gas to the material above the gating opening pressure of 275 mbar also leads to loss of Bragg scattering in the diffraction pattern.
Resumo:
The liquid state structure of the ionic liquid, 1-ethyl-3-methylimidazolium acetate, and the solute/solvent structure of glucose dissolved in the ionic liquid at a 1: 6 molar ratio have been investigated at 323 K by molecular dynamics simulations and neutron diffraction experiments using H/D isotopically substituted materials. Interactions between hydrogen-bond donating cation sites and polar, directional hydrogen-bond accepting acetate anions are examined. Ion-ion radial distribution functions for the neat ionic liquid, calculated from both MD and derived from the empirical potential structure refinement model to the experimental data, show the alternating shell-structure of anions around the cation, as anticipated. Spatial probability distributions reveal the main anion-to-cation features as in-plane interactions of anions with imidazolium ring hydrogens and cation-cation planar stacking. Interestingly, the presence of the polarised hydrogen-bond acceptor anion leads to increased anion-anion tail-tail structuring within each anion shell, indicating the onset of hydrophobic regions within the anion regions of the liquid.
Resumo:
The model room temperature ionic liquid, 1,3-dimethylimidazolium chloride, has been studied by neutron diffraction for the first time. The diffraction data are used to derive a structural model of this liquid using Empirical Potential Structure Refinement. The model obtained indicates that significant charge ordering is present in the liquid salt and that the local order in this liquid closely resembles that found in the solid state. As in the crystal structure, hydrogen-bonding interactions between the ring hydrogens and the chloride dominate the structure. The model is compared with the data reported previously for both simple alkyl substituted imidazolium halides and binary mixtures with AlCl3. (C) 2003 American Institute of Physics.
Study of diffraction of electromagnetic waves on array of composite microstrip patches. (in Russian)
Resumo:
Purpose. Processing of information through the cellular layers of the retina occurs in a serial manner. In the electroretinogram (ERG), this complicates interpretation of inner retinal changes as dysfunction may arise from "upstream" neurons or may indicate a direct loss to that neural generator. We propose an approach that addresses this issue by defining ERG gain relationships.
Methods. Regression analyses between two serial ERG parameters in a control cohort of rats are used to define gain relationships. These gains are then applied to two models of retinal disease.
Results. The PIIIamp to PIIamp gain is unity whereas the PIIamp to pSTRamp and PIIamp to nSTRamp gains are greater than unity, indicating "amplification" (P <0.05). Timing relationships show amplification between PIIIit to PIIit and compression for PIIit to pSTRit and PIIit to nSTRit, (P <0.05). Application of these gains to ?-3-deficiency indicates that all timing changes are downstream of photoreceptor changes, but a direct pSTR amplitude loss occurs (P <0.05). Application to diabetes indicates widespread inner retinal dysfunction which cannot be attributed to outer retinal changes (P <0.05).
Conclusions. This simple approach aids in the interpretation of inner retinal ERG changes by taking into account gain characteristics found between successive ERG components of normal animals.
Resumo:
Acutohaemolysin, a phospholipase A2 (PLA2) from the venom of the snake Agkistrodon acutus, has been isolated and purified to homogeneity by anion-exchange chromatography on a DEAE-Sepharose column followed by cation-exchange chromatography on a CM-Sepharose column. It is an alkaline protein with an isoelectric point of 10.5 and is comprised of a single polypeptide chain of 13 938 Da. Its N-terminal amino-acid sequence shows very high similarity to Lys49-type PLA2 proteins from other snake venoms. Although its PLA2 enzymatic activity is very low, acutohaemolysin has a strong indirect haemolytic activity and anticoagulant activity. Acutohaemolysin crystals with a diffraction limit of 1.60 Å were obtained by the hanging-drop vapour-diffusion method. The crystals belong to the space group C2, with unit-cell parameters a = 45.30, b = 59.55, c = 46.13 Å, [beta] = 117.69°. The asymmetric unit contains one molecule
Resumo:
6061 O Al alloy foils were welded to form monolithic and SiC fibre-embedded samples using the ultrasonic consolidation (UC) process. Contact pressures of 135, 155 and 175 MPa were investigated at 20 kHz frequency, 50% of the oscillation amplitude, 34.5 mm s sonotrode velocity and 20 °C. Deformed microstructures were analysed using electron backscatter diffraction (EBSD). At all contact pressures deformation occurs by non-steady state dislocation glide. Dynamic recovery is active in the upper and lower foils. Friction at the welding interface, instantaneous internal temperatures (0.5-0.8 of the melting temperature, T), contact pressure and fast strain rates result in transient microstructures and grain size reduction by continuous dynamic recrystallization (CDRX) within the bonding zone. Bonding occurs by local grain boundary migration, which allows diffusion and atom interlocking across the contact between two clean surfaces. Textures weaken with increasing contact pressure due to increased strain hardening and different grain rotation rates. High contact pressures enhance dynamic recovery and CDRX. Deformation around the fibre is intense within 50 μm and extends to 450 μm from it. © 2009 Acta Materialia Inc.