826 resultados para Difference Equations
Resumo:
Ginzburg-Landau equations with multiplicative noise are considered, to study the effects of fluctuations in domain growth. The equations are derived from a coarse-grained methodology and expressions for the resulting concentration-dependent diffusion coefficients are proposed. The multiplicative noise gives contributions to the Cahn-Hilliard linear-stability analysis. In particular, it introduces a delay in the domain-growth dynamics.
Resumo:
We consider stochastic partial differential equations with multiplicative noise. We derive an algorithm for the computer simulation of these equations. The algorithm is applied to study domain growth of a model with a conserved order parameter. The numerical results corroborate previous analytical predictions obtained by linear analysis.
Resumo:
The soil P sorption capacity has been studied for many years, but little attention has been paid to the rate of this process, which is relevant in the planning of phosphate fertilization. The purpose of this experiment was to assess kinetics of P sorption in 12 representative soil profiles of the State of Paraíba (Brazil), select the best data fitting among four equations and relate these coefficients to the soil properties. Samples of 12 soils with wide diversity of physical, chemical and mineralogical properties were agitated in a horizontal shaker, with 10 mmo L-1 CaCl2 solution containing 6 and 60 mg L-1 P, for periods of 5, 15, 30, 45, 60, 90, 120, 420, 720, 1,020, and 1,440 min. After each shaking period, the P concentration in the equilibrium solution was measured and three equations were fitted based on the Freundlich equation and one based on the Elovich equation, to determine which soil had the highest sorption rate (kinetics) and which soil properties correlated to this rate. The kinetics of P sorption in soils with high maximum P adsorption capacity (MPAC) was fast for 30 min at the lower initial P concentration (6 mg L-1). No difference was observed between soils at the higher initial P concentration (60 mg L-1). The P adsorption kinetics were positively correlated with clay content, MPAC and the amount of Al extracted with dithionite-citrate-bicarbonate. The data fitted well to Freundlich-based equations equation, whose coefficients can be used to predict P adsorption rates in soils.
Resumo:
A modified Bargmann-Wigner method is used to derive (6s + 1)-component wave equations. The relation between different forms of these equations is shown.
Resumo:
Knowledge of intensity-duration-frequency (IDF) relationships of rainfall events is extremely important to determine the dimensions of surface drainage structures and soil erosion control. The purpose of this study was to obtain IDF equations of 13 rain gauge stations in the state of Santa Catarina in Brazil: Chapecó, Urussanga, Campos Novos, Florianópolis, Lages, Caçador, Itajaí, Itá, Ponte Serrada, Porto União, Videira, Laguna and São Joaquim. The daily rainfall data charts of each station were digitized and then the annual maximum rainfall series were determined for durations ranging from 5 to 1440 min. Based on these, with the Gumbel-Chow distribution, the maximum rainfall was estimated for durations ranging from 5 min to 24 h, considering return periods of 2, 5, 10, 20, 25, 50, and 100 years,. Data agreement with the Gumbel-Chow model was verified by the Kolmogorov-Smirnov test, at 5 % significance level. For each rain gauge station, two IDF equations of rainfall events were adjusted, one for durations from 5 to 120 min and the other from 120 to 1440 min. The results show a high variability in maximum intensity of rainfall events among the studied stations. Highest values of coefficients of variation in the annual maximum series of rainfall were observed for durations of over 600 min at the stations of the coastal region of Santa Catarina.
Resumo:
Through an imaginary change of coordinates in the Galilei algebra in 4 space dimensions and making use of an original idea of Dirac and Lvy-Leblond, we are able to obtain the relativistic equations of Dirac and of Bargmann and Wigner starting with the (Galilean-invariant) Schrdinger equation.
Resumo:
We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field equations and the kinematic (eikonal) description in terms of a stochastic moving-boundary or sharp-interface approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in the original field equations, to first order in noise strength, but including a partial resummation to all orders which captures the singular dependence on the microscopic cutoff associated with the spatial correlation of the noise. This dependence is essential for a quantitative and qualitative understanding of fluctuating fronts, affecting both scaling properties and nonuniversal quantities. Our results predict phenomena such as the shift of the transition point between the pushed and pulled regimes of front propagation, in terms of the noise parameters, and the corresponding transition to a non-Kardar-Parisi-Zhang universality class. We assess the quantitative validity of the results in several examples including equilibrium fluctuations and kinetic roughening. We also predict and observe a noise-induced pushed-pulled transition. The analytical predictions are successfully tested against rigorous results and show excellent agreement with numerical simulations of reaction-diffusion field equations with multiplicative noise.
Resumo:
We study nonstationary non-Markovian processes defined by Langevin-type stochastic differential equations with an OrnsteinUhlenbeck driving force. We concentrate on the long time limit of the dynamical evolution. We derive an approximate equation for the correlation function of a nonlinear nonstationary non-Markovian process, and we discuss its consequences. Non-Markovicity can introduce a dependence on noise parameters in the dynamics of the correlation function in cases in which it becomes independent of these parameters in the Markovian limit. Several examples are discussed in which the relaxation time increases with respect to the Markovian limit. For a Brownian harmonic oscillator with fluctuating frequency, the non-Markovicity of the process decreases the domain of stability of the system, and it can change an infradamped evolution into an overdamped one.
Resumo:
The relationship between the Poincar and Galilei groups allows us to write the Poincar wave equations for arbitrary spin as a Fourier transform of the Galilean ones. The relation between the Lagrangian formulation for both cases is also studied.
Resumo:
We derive nonlinear diffusion equations and equations containing corrections due to fluctuations for a coarse-grained concentration field. To deal with diffusion coefficients with an explicit dependence on the concentration values, we generalize the Van Kampen method of expansion of the master equation to field variables. We apply these results to the derivation of equations of phase-separation dynamics and interfacial growth instabilities.
Resumo:
We have studied the interfacial instabilities experienced by a liquid annulus as it moves radially in a circular Hele-Shaw cell rotating with angular velocity Omega. The instability of the leading interface (oil displacing air) is driven by the density difference in the presence of centrifugal forcing, while the instability of the trailing interface (air displacing oil) is driven by the large viscosity contrast. A linear stability analysis shows that the stability of the two interfaces is coupled through the pressure field already at a linear level. We have performed experiments in a dry cell and in a cell coated with a thin fluid layer on each plate, and found that the stability depends substantially on the wetting conditions at the leading interface. Our experimental results of the number of fingers resulting from the instability compare well with the predictions obtained through a numerical integration of the coupled equations derived from a linear stability analysis. Deep in the nonlinear regime we observe the emission of liquid droplets through the formation of thin filaments at the tip of outgrowing fingers.