984 resultados para Diagrama HR
Resumo:
Concrete paving is often at a disadvantage in terms of pavement type selection due to the time of curing required prior to opening the pavement to traffic. The State of Iowa has been able to reduce traffic delay constraints through material selection and construction methods to date. Methods for monitoring concrete strength gain and quality have not changed since the first concrete pavements were constructed in Iowa. In 1995, Lee County and the Iowa DOT cooperated in a research project, HR-380, to construct a 7.1 mile (11. 43 km) project to evaluate the use of maturity and pulse velocity nondestructive testing (NDT) methods in the estimation of concrete strength gain. The research identified the pros and cons of each method and suggested an instructional memorandum to utilize maturity measurements to meet traffic delay demands. Maturity was used to reduce the traffic delay opening time from 5-7 days to less than 2 days through the implementation of maturity measurements and special traffic control measures. Recommendations on the development of the maturity curve for each project and the location and monitoring of the maturity thermocouples are included. Examples of equipment that could easily be used by project personnel to estimate the concrete strength using the maturity methods is described.
Resumo:
In the administration, planning, design, and maintenance of road systems, transportation professionals often need to choose between alternatives, justify decisions, evaluate tradeoffs, determine how much to spend, set priorities, assess how well the network meets traveler needs, and communicate the basis for their actions to others. A variety of technical guidelines, tools, and methods have been developed to help with these activities. Such work aids include design criteria guidelines, design exception analysis methods, needs studies, revenue allocation schemes, regional planning guides, designation of minimum standards, sufficiency ratings, management systems, point based systems to determine eligibility for paving, functional classification, and bridge ratings. While such tools play valuable roles, they also manifest a number of deficiencies and are poorly integrated. Design guides tell what solutions MAY be used, they aren't oriented towards helping find which one SHOULD be used. Design exception methods help justify deviation from design guide requirements but omit consideration of important factors. Resource distribution is too often based on dividing up what's available rather than helping determine how much should be spent. Point systems serve well as procedural tools but are employed primarily to justify decisions that have already been made. In addition, the tools aren't very scalable: a system level method of analysis seldom works at the project level and vice versa. In conjunction with the issues cited above, the operation and financing of the road and highway system is often the subject of criticisms that raise fundamental questions: What is the best way to determine how much money should be spent on a city or a county's road network? Is the size and quality of the rural road system appropriate? Is too much or too little money spent on road work? What parts of the system should be upgraded and in what sequence? Do truckers receive a hidden subsidy from other motorists? Do transportation professions evaluate road situations from too narrow of a perspective? In considering the issues and questions the author concluded that it would be of value if one could identify and develop a new method that would overcome the shortcomings of existing methods, be scalable, be capable of being understood by the general public, and utilize a broad viewpoint. After trying out a number of concepts, it appeared that a good approach would be to view the road network as a sub-component of a much larger system that also includes vehicles, people, goods-in-transit, and all the ancillary items needed to make the system function. Highway investment decisions could then be made on the basis of how they affect the total cost of operating the total system. A concept, named the "Total Cost of Transportation" method, was then developed and tested. The concept rests on four key principles: 1) that roads are but one sub-system of a much larger 'Road Based Transportation System', 2) that the size and activity level of the overall system are determined by market forces, 3) that the sum of everything expended, consumed, given up, or permanently reserved in building the system and generating the activity that results from the market forces represents the total cost of transportation, and 4) that the economic purpose of making road improvements is to minimize that total cost. To test the practical value of the theory, a special database and spreadsheet model of Iowa's county road network was developed. This involved creating a physical model to represent the size, characteristics, activity levels, and the rates at which the activities take place, developing a companion economic cost model, then using the two in tandem to explore a variety of issues. Ultimately, the theory and model proved capable of being used in full system, partial system, single segment, project, and general design guide levels of analysis. The method appeared to be capable of remedying many of the existing work method defects and to answer society's transportation questions from a new perspective.
Resumo:
Supplement to HR-388 - "Total Cost of Transportation Analysis of Road and Highway Issues"
Resumo:
TPMS is proposed as a distributed, PC-based system for automating two processes required for road improvements in Iowa: a) the annual preparation, submission, and approval of road improvement programs. b) the ongoing process of developing plans and obtaining approval for projects to be let for bids.
Resumo:
HR-394 was a software and database development project. Via funding provided by the Iowa Highway Research Board, the Iowa County Engineer's Association Service Bureau oversaw the planning and implementation of an Internet based application that supports two major local-government transportation project activities: Project programming and Development tracking. The goals were to reduce errors and inconsistencies, speed up the processes, link people to both project data and each other, and build a framework that could eventually support a 'paperless' work flow. The work started in 1999 and initial development was completed by the fall of 2002. Since going live, several 'piggy back' applications have been required to make the Programming side better fit actual work procedures. This part of the system has proven adequate but will be rewritten in 2004 to make it easier to use. The original development side module was rejected by the users and so had to be rewritten in 2003. The second version has proven much better, is heavily used, and is interconnected with Iowa DOT project data systems. Now that the system is in operation, it will be maintained and operated by the ICEA Service Bureau as an ongoing service function.
Resumo:
Statistical summaries of streamflow data collected at 156 streamflow-gaging stations in Iowa are presented in this report. All gaging stations included for analysis have at least 10 years of continuous record collected before or through September 1996. The statistical summaries include (1) statistics of monthly and annual mean discharges; (2) monthly and annual flow durations; (3) magnitudes and frequencies of instantaneous peak discharges (flood frequencies); and (4) magnitudes and frequencies of high and low discharges. Also presented for each gaging station is a graph of the annual mean flows and, for most stations, selected values from the most-recent stage-discharge rating table.
Resumo:
A statewide study was conducted to develop regression equations for estimating flood-frequency discharges for ungaged stream sites in Iowa. Thirty-eight selected basin characteristics were quantified and flood-frequency analyses were computed for 291 streamflow-gaging stations in Iowa and adjacent States. A generalized-skew-coefficient analysis was conducted to determine whether generalized skew coefficients could be improved for Iowa. Station skew coefficients were computed for 239 gaging stations in Iowa and adjacent States, and an isoline map of generalized-skew-coefficient values was developed for Iowa using variogram modeling and kriging methods. The skew map provided the lowest mean square error for the generalized-skew- coefficient analysis and was used to revise generalized skew coefficients for flood-frequency analyses for gaging stations in Iowa. Regional regression analysis, using generalized least-squares regression and data from 241 gaging stations, was used to develop equations for three hydrologic regions defined for the State. The regression equations can be used to estimate flood discharges that have recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years for ungaged stream sites in Iowa. One-variable equations were developed for each of the three regions and multi-variable equations were developed for two of the regions. Two sets of equations are presented for two of the regions because one-variable equations are considered easy for users to apply and the predictive accuracies of multi-variable equations are greater. Standard error of prediction for the one-variable equations ranges from about 34 to 45 percent and for the multi-variable equations range from about 31 to 42 percent. A region-of-influence regression method was also investigated for estimating flood-frequency discharges for ungaged stream sites in Iowa. A comparison of regional and region-of-influence regression methods, based on ease of application and root mean square errors, determined the regional regression method to be the better estimation method for Iowa. Techniques for estimating flood-frequency discharges for streams in Iowa are presented for determining ( 1) regional regression estimates for ungaged sites on ungaged streams; (2) weighted estimates for gaged sites; and (3) weighted estimates for ungaged sites on gaged streams. The technique for determining regional regression estimates for ungaged sites on ungaged streams requires determining which of four possible examples applies to the location of the stream site and its basin. Illustrations for determining which example applies to an ungaged stream site and for applying both the one-variable and multi-variable regression equations are provided for the estimation techniques.
Resumo:
This report updates the Iowa Department of Transportation (DOT) design procedures for circular, slope-tapered concrete culverts. The current practice is to use the design coefficients for a square-edged, circular concrete culvert with a headwall that are found in Hydraulic Series No. 5 (HDS-5). New inlet control design constants and entrance loss coefficients were calculated for the slope-tapered culverts and then compared with the HDS-5 coefficients (square edge). In addition, various reducer lengths and taper ratios were also studied to determine what impact, if any, they have on the design coefficients. All of the laboratory testing was done at the Federal Highway Administration�s Turner-Fairbank Highway Research Center located in McLean, Virginia.
Resumo:
In recent years, the Iowa Department of Transportation has put greater emphasis on improving highway safety. This effort has been relatively successful with a reduction in traffic-related fatalities to levels experienced prior to 1950. The nationwide speed limit of 55 mph was probably the greatest contributor to the decline in traffic fatalities, but there have been many other efforts that have also contributed to this decline. The Iowa DOT has been testing all paved roadways periodically for friction coefficient since 1969. New techniques have been used to obtain a greater depth of surface texture on paved roadways. Transverse tined grooving has been used on portland cement concrete to provide increased texture depth.
Resumo:
ASPHALT STABILIZATION (ASPHADUR): Asphadur (now called 3M Additive 5990) was incorporated into asphaltic concrete on a lane delineation, AC resurfacing, project in Council Bluffs. The experimental feature was included in the eastbound lanes of Interstate 480, beginning at the bridge over the Missouri River and ending at the bridge over North 41st Street. The project was constructed in October 1979. The objective of the project was to investigate the manufacturer's claims of improved strength, stability and durability of an asphalt mix. REDUCTION OF REFLECTION CRACKS (MONSANTO BIDIM SYNTHETIC FABRIC): A lane delineation project was constructed in the eastbound lanes of Interstate 480 in Council Bluffs. A synthetic fabric, Monsanto Bidim C-28, was placed between the portland cement concrete and two inches of Type A asphaltic concrete resurfacing containing Asphadur. The experimental feature began at the bridge over the Missouri River and ended at the bridge over North 41st Street. The project was constructed in October 1979. The objective of this experimental project was to determine the effectiveness of the fabric in reducing reflective cracking in an asphaltic concrete overlay.
Resumo:
Safety is an important aspect of highway design. Texture and frictional properties are important characteristics in providing safe roadways. Longevity of desirable frictional properties is highly dependent on the aggregate within asphalt pavement. Iowa unfortunately has areas of the State where the locally available aggregate will not give long lasting desirable frictional properties. Iowa has utilized sprinkle treatments to improve the safety of many new asphalt concrete pavements.
Resumo:
The Special Investigations Section recently completed the final evaluation of the I-80 eastbound bonded overlay placed in 1979 between the Shelby and Avoca interchanges in Pottawattamie County.
Resumo:
This report presents the results of a survey on the use of yellow versus white traffic paint. It was found that in most states the white paint was less expensive than the yellow. A substantial savings could be realized if an all white traffic marking system was permitted by the Federal Highway Administration. Paint costs from each state are presented, as well as by each region.
Resumo:
Iowa's first field application of synthetic engineering fabrics was on research project HR-158, "Prevention of Reflective Cracking in Asphalt Overlays". This research placed in September 1971 used three different engineering fabrics. A final report concluding generally favorable performance was distributed in May 1977. There have been a number of Iowa engineering fabric installations since that initial project.
Resumo:
There is an urgent need to complete projects in high traffic urban areas in the shortest possible time. These road user benefits resulting from faster construction will minimize public inconvenience, safety hazards and a total cost to the public. The incentive - disincentive clause in the contract will encourage the contractor to expedite all phases in the contract. A copy of this special provision is part of this work plan and other details of construction are included in the plan and specification of Project F-65-4(34)--20-77.