978 resultados para Delayed synchronization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As long as global CO₂ emissions continue to increase annually, long-term committed Earth system changes grow much faster than current observations. A novel metric linking this future growth to policy decisions today is the mitigation delay sensitivity (MDS), but MDS estimates for Earth system variables other than peak temperature (ΔT max) are missing. Using an Earth System Model of Intermediate Complexity, we show that the current emission increase rate causes a ΔT max increase roughly 3–7.5 times as fast as observed warming, and a millenial steric sea level rise (SSLR) 7–25 times as fast as observed SSLR, depending on the achievable rate of emission reductions after the peak of emissions. These ranges are only slightly affected by the uncertainty range in equilibrium climate sensitivity, which is included in the above values. The extent of ocean acidification at the end of the century is also strongly dependent on the starting time and rate of emission reductions. The preservable surface ocean area with sufficient aragonite supersaturation for coral reef growth is diminished globally at an MDS of roughly 25%–80% per decade. A near-complete loss of this area becomes unavoidable if mitigation is delayed for a few years to decades. Also with respect to aragonite, 12%–18% of the Southern Ocean surface become undersaturated per decade, if emission reductions are delayed beyond 2015–2040. We conclude that the consequences of delaying global emission reductions are much better captured if the MDS of relevant Earth system variables is communicated in addition to current trends and total projected future changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS To investigate and quantify the clinical benefits of early versus delayed application of Thomas splints in patients with isolated femur shaft fractures. MATERIALS AND METHODS Level IV retrospective clinical and radiological analysis of patients presenting from January to December 2012 at a Level 1 Trauma Unit. All skeletally mature patients with isolated femur shaft fractures independently of their mechanism of injury were included. Exclusion criteria were: ipsilateral fracture of the lower limb, neck and supracondylar femur fractures, periprosthetic and incomplete fractures. Their clinical records were analysed for blood transfusion requirements, pulmonary complications, surgery time, duration of hospital stay and analgesic requirements. RESULTS A total of 106 patients met our inclusion criteria. There were 74 males and 32 females. Fifty seven (54%) patients were in the 'early splinted' group and 49 patients (46%) were in the 'delayed splinted' group (P>0.05). The need for blood transfusion was significantly reduced in the 'early splinted' group (P=0.04). There was a significantly higher rate of pulmonary complications in the 'delayed splinted' group (P=0.008). All other parameters were similar between the two groups. CONCLUSION The early application of Thomas splints for isolated femur fractures in non-polytraumatised patients has a clinically and statistically significant benefit of reducing the need for blood transfusions and the incidence of pulmonary complications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular Ehlers-Danlos syndrome is a heritable disease of connective tissue caused by mutations in COL3A1, conferring a tissue deficiency of type III collagen. Cutaneous wounds heal poorly in these patients, and they are susceptible to spontaneous and catastrophic rupture of expansible hollow organs like the gut, uterus, and medium-sized to large arteries, which leads to premature death. Although the predisposition for organ rupture is often attributed to inherent tissue fragility, investigation of arteries from a haploinsufficient Col3a1 mouse model (Col3a1+/-) demonstrates that mutant arteries withstand even supraphysiologic pressures comparably to wild-type vessels. We hypothesize that injury that elicits occlusive thrombi instead unmasks defective thrombus resolution resulting from impaired production of type III collagen, which causes deranged remodeling of matrix, persistent inflammation, and dysregulated behavior by resident myofibroblasts, culminating in the development of penetrating neovascular channels that disrupt the mechanical integrity of the arterial wall. Vascular injury and thrombus formation following ligation of the carotid artery reveals an abnormal persistence and elevated burden of occlusive thrombi at 21 post-operative days in vessels from Col3a1+/- mice, as opposed to near complete resolution and formation of a patent and mature neointima in wild-type mice. At only 14 days, both groups harbor comparable burdens of resolving thrombi, but wild-type mice increase production of type III collagen in actively resolving tissues, while mutant mice do not. Rather, thrombi in mutant mice contain higher burdens of macrophages and proliferative myofibroblasts, which persist through 21 days while wild-type thrombi, inflammatory cells, and proliferation all regress. At the same time that increased macrophage burdens were observed at 14 and 21 days post ligation, the medial layer of mutant arterial walls concurrently harbored a significantly higher incidence of penetrating neovessels compared with those in wild-type mice. To assess whether limited type III collagen production alters myofibroblast behavior, fibroblasts from vEDS patients with COL3A1 missense mutations were seeded into three-dimensional fibrin gel constructs and stimulated with transforming growth factor-β1 to initiate myofibroblast differentiation. Although early signaling events occur similarly in all cell lines, late extracellular matrix- and mechanically-regulated events like transcriptional upregulation of type I and type III collagen secretion are delayed in mutant cultures, while transcription of genes encoding intracellular contractile machinery is increased. Sophisticated imaging of collagen synthesized de novo by resident myofibroblasts visualizes complex matrix reorganization by control cells but only meager remodeling by COL3A1 mutant cells, concordant with their compensatory contraction to maintain tension in the matrix. Finally, administration of immunosuppressive rapamycin to mice following carotid ligation sufficiently halts the initial inflammatory phase of thrombus resolution and fully prevents both myofibroblast migration into the thrombus and the differential development of neovessels between mutant and wild-type mice, suggesting that pathological defects in mutant arteries develop secondarily to myofibroblast dysfunction and chronic inflammatory stimulation, rather than as a manifestation of tissue fragility. Together these data establish evidence that pathological defects in the vessel wall architecture develop in mutant arteries as sequelae to abnormal healing and remodeling responses activated by arterial injury. Thus, these data support the hypothesis that events threatening the integrity of type III collagen-deficient vessels develop not as a result of inherent tissue weakness and fragility at baseline but instead as an episodic byproduct of abnormally persistent granulation tissue and fibroproliferative intravascular remodeling.