959 resultados para Defeasible conditional


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cone-beam computed tomography (CBCT) has enormous potential to improve the accuracy of treatment delivery in image-guided radiotherapy (IGRT). To assist radiotherapists in interpreting these images, we use a Bayesian statistical model to label each voxel according to its tissue type. The rich sources of prior information in IGRT are incorporated into a hidden Markov random field model of the 3D image lattice. Tissue densities in the reference CT scan are estimated using inverse regression and then rescaled to approximate the corresponding CBCT intensity values. The treatment planning contours are combined with published studies of physiological variability to produce a spatial prior distribution for changes in the size, shape and position of the tumour volume and organs at risk. The voxel labels are estimated using iterated conditional modes. The accuracy of the method has been evaluated using 27 CBCT scans of an electron density phantom. The mean voxel-wise misclassification rate was 6.2\%, with Dice similarity coefficient of 0.73 for liver, muscle, breast and adipose tissue. By incorporating prior information, we are able to successfully segment CBCT images. This could be a viable approach for automated, online image analysis in radiotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Facial cues of racial outgroup or anger mediate fear learning that is resistant to extinction. Whether this resistance is potentiated if fear is conditioned to angry, other race faces has not been established. Two groups of Caucasian participants were conditioned with two happy and two angry face conditional stimuli (CSs). During acquisition, one happy and one angry face were paired with an aversive unconditional stimulus whereas the second happy and angry faces were presented alone. CS face race (Caucasian, African American) was varied between groups. During habituation, electrodermal responses were larger to angry faces regardless of race and declined less to other race faces. Extinction was immediate for Caucasian happy faces, delayed for angry faces regardless of race, and slowest for happy racial outgroup faces. Combining the facial cues of other race and anger does not enhance resistance to extinction of fear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background & aims The confounding effect of disease on the outcomes of malnutrition using diagnosis-related groups (DRG) has never been studied in a multidisciplinary setting. This study aims to determine the impact of malnutrition on hospitalisation outcomes, controlling for DRG. Methods Subjective Global Assessment was used to assess the nutritional status of 818 patients within 48 hours of admission. Prospective data were collected on cost of hospitalisation, length of stay (LOS), readmission and mortality up to 3 years post-discharged using National Death Register data. Mixed model analysis and conditional logistic regression matching by DRG were carried out to evaluate the association between nutritional status and outcomes, with the results adjusted for gender, age and race. Results Malnourished patients (29%) had longer hospital stays (6.9±7.3 days vs. 4.6±5.6 days, p<0.001) and were more likely to be readmitted within 15 days (adjusted relative risk = 1.9, 95%CI 1.1–3.2, p=0.025). Within a DRG, the mean difference between actual cost of hospitalisation and the average cost for malnourished patients was greater than well-nourished patients (p=0.014). Mortality was higher in malnourished patients at 1 year (34% vs. 4.1 %), 2 years (42.6% vs. 6.7%) and 3 years (48.5% vs. 9.9%); p<0.001 for all. Overall, malnutrition was a significant predictor of mortality (adjusted hazard ratio = 4.4, 95%CI 3.3-6.0, p<0.001). Conclusions Malnutrition was evident in up to one third of inpatients and led to poor hospitalisation outcomes, even after matching for DRG. Strategies to prevent and treat malnutrition in the hospital and post-discharge are needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrous oxide (N2O) is one of the greenhouse gases that can contribute to global warming. Spatial variability of N2O can lead to large uncertainties in prediction. However, previous studies have often ignored the spatial dependency to quantify the N2O - environmental factors relationships. Few researches have examined the impacts of various spatial correlation structures (e.g. independence, distance-based and neighbourhood based) on spatial prediction of N2O emissions. This study aimed to assess the impact of three spatial correlation structures on spatial predictions and calibrate the spatial prediction using Bayesian model averaging (BMA) based on replicated, irregular point-referenced data. The data were measured in 17 chambers randomly placed across a 271 m(2) field between October 2007 and September 2008 in the southeast of Australia. We used a Bayesian geostatistical model and a Bayesian spatial conditional autoregressive (CAR) model to investigate and accommodate spatial dependency, and to estimate the effects of environmental variables on N2O emissions across the study site. We compared these with a Bayesian regression model with independent errors. The three approaches resulted in different derived maps of spatial prediction of N2O emissions. We found that incorporating spatial dependency in the model not only substantially improved predictions of N2O emission from soil, but also better quantified uncertainties of soil parameters in the study. The hybrid model structure obtained by BMA improved the accuracy of spatial prediction of N2O emissions across this study region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Pandemic influenza A (H1N1) has a significant public health impact. This study aimed to examine the effect of socio-ecological factors on the transmission of H1N1 in Brisbane, Australia. METHODOLOGY We obtained data from Queensland Health on numbers of laboratory-confirmed daily H1N1 in Brisbane by statistical local areas (SLA) in 2009. Data on weather and socio-economic index were obtained from the Australian Bureau of Meteorology and the Australian Bureau of Statistics, respectively. A Bayesian spatial conditional autoregressive (CAR) model was used to quantify the relationship between variation of H1N1 and independent factors and to determine its spatiotemporal patterns. RESULTS Our results show that average increase in weekly H1N1 cases were 45.04% (95% credible interval (CrI): 42.63-47.43%) and 23.20% (95% CrI: 16.10-32.67%), for a 1 °C decrease in average weekly maximum temperature at a lag of one week and a 10mm decrease in average weekly rainfall at a lag of one week, respectively. An interactive effect between temperature and rainfall on H1N1 incidence was found (changes: 0.71%; 95% CrI: 0.48-0.98%). The auto-regression term was significantly associated with H1N1 transmission (changes: 2.5%; 95% CrI: 1.39-3.72). No significant association between socio-economic indexes for areas (SEIFA) and H1N1 was observed at SLA level. CONCLUSIONS Our results demonstrate that average weekly temperature at lag of one week and rainfall at lag of one week were substantially associated with H1N1 incidence at a SLA level. The ecological factors seemed to have played an important role in H1N1 transmission cycles in Brisbane, Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of hierarchical Bayesian spatial models in the analysis of ecological data is increasingly prevalent. The implementation of these models has been heretofore limited to specifically written software that required extensive programming knowledge to create. The advent of WinBUGS provides access to Bayesian hierarchical models for those without the programming expertise to create their own models and allows for the more rapid implementation of new models and data analysis. This facility is demonstrated here using data collected by the Missouri Department of Conservation for the Missouri Turkey Hunting Survey of 1996. Three models are considered, the first uses the collected data to estimate the success rate for individual hunters at the county level and incorporates a conditional autoregressive (CAR) spatial effect. The second model builds upon the first by simultaneously estimating the success rate and harvest at the county level, while the third estimates the success rate and hunting pressure at the county level. These models are discussed in detail as well as their implementation in WinBUGS and the issues arising therein. Future areas of application for WinBUGS and the latest developments in WinBUGS are discussed as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an approach to automatically de-identify health records. In our approach, personal health information is identified using a Conditional Random Fields machine learning classifier, a large set of linguistic and lexical features, and pattern matching techniques. Identified personal information is then removed from the reports. The de-identification of personal health information is fundamental for the sharing and secondary use of electronic health records, for example for data mining and disease monitoring. The effectiveness of our approach is first evaluated on the 2007 i2b2 Shared Task dataset, a widely adopted dataset for evaluating de-identification techniques. Subsequently, we investigate the robustness of the approach to limited training data; we study its effectiveness on different type and quality of data by evaluating the approach on scanned pathology reports from an Australian institution. This data contains optical character recognition errors, as well as linguistic conventions that differ from those contained in the i2b2 dataset, for example different date formats. The findings suggest that our approach compares to the best approach from the 2007 i2b2 Shared Task; in addition, the approach is found to be robust to variations of training size, data type and quality in presence of sufficient training data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obtaining attribute values of non-chosen alternatives in a revealed preference context is challenging because non-chosen alternative attributes are unobserved by choosers, chooser perceptions of attribute values may not reflect reality, existing methods for imputing these values suffer from shortcomings, and obtaining non-chosen attribute values is resource intensive. This paper presents a unique Bayesian (multiple) Imputation Multinomial Logit model that imputes unobserved travel times and distances of non-chosen travel modes based on random draws from the conditional posterior distribution of missing values. The calibrated Bayesian (multiple) Imputation Multinomial Logit model imputes non-chosen time and distance values that convincingly replicate observed choice behavior. Although network skims were used for calibration, more realistic data such as supplemental geographically referenced surveys or stated preference data may be preferred. The model is ideally suited for imputing variation in intrazonal non-chosen mode attributes and for assessing the marginal impacts of travel policies, programs, or prices within traffic analysis zones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective Evaluate the effectiveness and robustness of Anonym, a tool for de-identifying free-text health records based on conditional random fields classifiers informed by linguistic and lexical features, as well as features extracted by pattern matching techniques. De-identification of personal health information in electronic health records is essential for the sharing and secondary usage of clinical data. De-identification tools that adapt to different sources of clinical data are attractive as they would require minimal intervention to guarantee high effectiveness. Methods and Materials The effectiveness and robustness of Anonym are evaluated across multiple datasets, including the widely adopted Integrating Biology and the Bedside (i2b2) dataset, used for evaluation in a de-identification challenge. The datasets used here vary in type of health records, source of data, and their quality, with one of the datasets containing optical character recognition errors. Results Anonym identifies and removes up to 96.6% of personal health identifiers (recall) with a precision of up to 98.2% on the i2b2 dataset, outperforming the best system proposed in the i2b2 challenge. The effectiveness of Anonym across datasets is found to depend on the amount of information available for training. Conclusion Findings show that Anonym compares to the best approach from the 2006 i2b2 shared task. It is easy to retrain Anonym with new datasets; if retrained, the system is robust to variations of training size, data type and quality in presence of sufficient training data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: To assess the impact of exposure to ambient heat on urolithiasis among outdoor workers in a subtropical city of China. Methods: The 2003–2010 health check data of a shipbuilding company in Guangzhou, China were acquired. 190 cases and 760 matched controls were involved in this study. We assessed the relationship between exposure to ambient heat and urolithiasis for different occupations using conditional logistic regression. Results: Spray painters were most likely to develop urolithiasis (OR = 4.4; 95% CI: 1.7, 11.4), followed by smelter workers (OR = 4.0; 95% CI: 1.8, 9.2), welders (OR = 3.7; 95% CI: 1.9, 7.2), production security and quality inspectors (OR = 2.7; 95% CI: 1.4, 3.0), and assemblers (OR = 2.2; 95% CI: 1.1, 4.3). Overall, outdoor workers were more likely to present with urolithiasis compared with indoor employees (p b 0.05). In addition, workers with longer cumulative exposure time (OR = 1.5; 95% CI: 1.2, 1.8) and abnormal blood pressure (OR = 1.6; 95% CI: 1.0, 2.5) had higher risk for urolithiasis. Conclusions: Our findings demonstrate a significant association between exposure to ambient heat and urolithiasis among outdoor working populations. Public health intervention strategies should be developed to specifically target outdoor occupations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A defining characteristic of contemporary welfare governance in many western countries has been a reduced role for governments in direct provision of welfare, including housing, education, health and income support. One of the unintended consequences of devolutionary trends in social welfare is the development of a ‘shadow welfare state’ (Fairbanks, 2009; Gottschalk, 2000), which is a term used to describe the complex partnerships between statebased social protection, voluntarism and marketised forms of welfare. Coupled with this development, conditional workfare schemes in countries such as the United States, Canada, the UK and Australia are pushing more people into informal and semi-formal means of poverty survival (Karger, 2005). These transformations are actively reshaping welfare subjectivities and the role of the state in urban governance. Like other countries such as the US, Canada and the UK, the fringe lending sector in Australia has experienced considerable growth over the last decade. Large numbers of people on low incomes in Australia are turning to non-mainstream financial services, such as payday lenders, for the provision of credit to make ends meet. In this paper, we argue that the use of fringe lenders by people on low incomes reveals important theoretical and practical insights into the relationship between the mixed economy of welfare and the mixed economy of credit in poverty survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is an update of an earlier paper, and is written for Excel 2007. A series of Excel 2007 models is described. The more advanced versions allow solution of f(x)=0 by examining change of sign of function values. The function is graphed and change of sign easily detected by a change of colour. Relevant features of Excel 2007 used are Names, Scatter Chart and Conditional Formatting. Several sample Excel 2007 models are available for download, and the paper is intended to be used as a lesson plan for students having some familiarity with derivatives. For comparison and reference purposes, the paper also presents a brief outline of several common equation-solving strategies as an Appendix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many students of calculus are not aware that the calculus they have learned is a special case (integer order) of fractional calculus. Fractional calculus is the study of arbitrary order derivatives and integrals and their applications. The article begins by stating a naive question from a student in a paper by Larson (1974) and establishes, for polynomials and exponential functions, that they can be deformed into their derivative using the μ-th order fractional derivatives for 0<μ<1. Through the power of Excel we illustrate the continuous deformations dynamically through conditional formatting. Some applications are discussed and a connection made to mathematics education.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers two problems that frequently arise in dynamic discrete choice problems but have not received much attention with regard to simulation methods. The first problem is how to simulate unbiased simulators of probabilities conditional on past history. The second is simulating a discrete transition probability model when the underlying dependent variable is really continuous. Both methods work well relative to reasonable alternatives in the application discussed. However, in both cases, for this application, simpler methods also provide reasonably good results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the properties of various approximation methods for solving stochastic dynamic programs in structural estimation problems. The problem addressed is evaluating the expected value of the maximum of available choices. The paper shows that approximating this by the maximum of expected values frequently has poor properties. It also shows that choosing a convenient distributional assumptions for the errors and then solving exactly conditional on the distributional assumption leads to small approximation errors even if the distribution is misspecified. © 1997 Cambridge University Press.