865 resultados para Damage sensing
Resumo:
The boll weevil (Anthonomus grandis Boheman) causes high levels of bud abscission in cotton plants due to feeding or oviposition punctures. It has been reported that abscission is mainly due to enzymes present in the insect's saliva, but mechanical damage could also contribute to square abscission. The objective of this paper was to undertake an analysis of the morphological damages caused by the insect in cotton squares using microscopy. Anthers and ovules are the main target of boll weevil feeding. The process initiates by perforation of young sepal and petal tissues and proceeds with subsequent alimentation on stamen and ovary leading to abscission of floral structures.
Resumo:
We propose a compressive sensing algorithm that exploits geometric properties of images to recover images of high quality from few measurements. The image reconstruction is done by iterating the two following steps: 1) estimation of normal vectors of the image level curves, and 2) reconstruction of an image fitting the normal vectors, the compressed sensing measurements, and the sparsity constraint. The proposed technique can naturally extend to nonlocal operators and graphs to exploit the repetitive nature of textured images to recover fine detail structures. In both cases, the problem is reduced to a series of convex minimization problems that can be efficiently solved with a combination of variable splitting and augmented Lagrangian methods, leading to fast and easy-to-code algorithms. Extended experiments show a clear improvement over related state-of-the-art algorithms in the quality of the reconstructed images and the robustness of the proposed method to noise, different kind of images, and reduced measurements.
Resumo:
Gait analysis methods to estimate spatiotemporal measures, based on two, three or four gyroscopes attached on lower limbs have been discussed in the literature. The most common approach to reduce the number of sensing units is to simplify the underlying biomechanical gait model. In this study, we propose a novel method based on prediction of movements of thighs from movements of shanks. Datasets from three previous studies were used. Data from the first study (ten healthy subjects and ten with Parkinson's disease) were used to develop and calibrate a system with only two gyroscopes attached on shanks. Data from two other studies (36 subjects with hip replacement, seven subjects with coxarthrosis, and eight control subjects) were used for comparison with the other methods and for assessment of error compared to a motion capture system. Results show that the error of estimation of stride length compared to motion capture with the system with four gyroscopes and our new method based on two gyroscopes was close ( -0.8 ±6.6 versus 3.8 ±6.6 cm). An alternative with three sensing units did not show better results (error: -0.2 ±8.4 cm). Finally, a fourth that also used two units but with a simpler gait model had the highest bias compared to the reference (error: -25.6 ±7.6 cm). We concluded that it is feasible to estimate movements of thighs from movements of shanks to reduce number of needed sensing units from 4 to 2 in context of ambulatory gait analysis.
Resumo:
This pamphlet will help you decide which trees to save during construction. It shows simple, reliable methods that will keep trees safe during construction work.
Resumo:
Glucose is an important signal that regulates glucose and energy homeostasis but its precise physiological role and signaling mechanism in the brain are still uncompletely understood. Over the recent years we have investigated the possibility that central glucose sensing may share functional similarities with glucose sensing by pancreatic beta-cells, in particular a requirement for the expression of the glucose transporter Glut2. Using mice with genetic inactivation of Glut2, but rescued pancreatic beta-cell function by transgenic expression of a glucose transporter, we have established that extrapancreatic glucose sensors are involved: i) in the control of glucagon secretion in response to hypoglycemia, ii) in the control of feeding and iii) of energy expenditure. We have more recently shown that central Glut2-dependent glucose sensors are involved in the regulation of NPY and POMC expression by arcuate nucleus neurons and that the sensitivity to leptin of these neurons is enhanced by Glut2-dependent glucose sensors. Using mice with genetic tagging of Glut2-expressing cells, we determined that the NPY and POMC neurons did not express Glut2 but were connected to Glut2 expressing neurons located most probably outside of the arcuate nucleus. We are now defining the electrophysiological behavior of these Glut2 expressing neurons. Our data provide an initial map of glucose sensing neurons expressing Glut2 and link these neurons with the control of specific physiological function.
Resumo:
Extracellular acidification has been shown to generate action potentials (APs) in several types of neurons. In this study, we investigated the role of acid-sensing ion channels (ASICs) in acid-induced AP generation in brain neurons. ASICs are neuronal Na(+) channels that belong to the epithelial Na(+) channel/degenerin family and are transiently activated by a rapid drop in extracellular pH. We compared the pharmacological and biophysical properties of acid-induced AP generation with those of ASIC currents in cultured hippocampal neurons. Our results show that acid-induced AP generation in these neurons is essentially due to ASIC activation. We demonstrate for the first time that the probability of inducing APs correlates with current entry through ASICs. We also show that ASIC activation in combination with other excitatory stimuli can either facilitate AP generation or inhibit AP bursts, depending on the conditions. ASIC-mediated generation and modulation of APs can be induced by extracellular pH changes from 7.4 to slightly <7. Such local extracellular pH values may be reached by pH fluctuations due to normal neuronal activity. Furthermore, in the plasma membrane, ASICs are localized in close proximity to voltage-gated Na(+) and K(+) channels, providing the conditions necessary for the transduction of local pH changes into electrical signals.
Resumo:
A significant number of environmental microorganisms can cause serious, even fatal, acute and chronic infections in humans. The severity and outcome of each type of infection depends on the expression of specific bacterial phenotypes controlled by complex regulatory networks that sense and respond to the host environment. Although bacterial signals that contribute to a successful acute infection have been identified in a number of pathogens, the signals that mediate the onset and establishment of chronic infections have yet to be discovered. We identified a volatile, low molecular weight molecule, 2-amino acetophenone (2-AA), produced by the opportunistic human pathogen Pseudomonas aeruginosa that reduces bacterial virulence in vivo in flies and in an acute mouse infection model. 2-AA modulates the activity of the virulence regulator MvfR (multiple virulence factor regulator) via a negative feedback loop and it promotes the emergence of P. aeruginosa phenotypes that likely promote chronic lung infections, including accumulation of lasR mutants, long-term survival at stationary phase, and persistence in a Drosophila infection model. We report for the first time the existence of a quorum sensing (QS) regulated volatile molecule that induces bistability phenotype by stochastically silencing acute virulence functions in P. aeruginosa. We propose that 2-AA mediates changes in a subpopulation of cells that facilitate the exploitation of dynamic host environments and promote gene expression changes that favor chronic infections.
Resumo:
A multicomponent indicator displacement assay ( MIDA) based on an organometallic receptor and three dyes can be used for the identification and quantification of nucleotides in aqueous solution at neutral pH.
Resumo:
Remote sensing was utilized in the Phase II Cultural Resources Investigation for this project in lieu of extensive excavations. The purpose of the present report is to compare the costs and benefits of the use of remote sensing to the hypothetical use of traditional excavation methods for this project. Estimates for this hypothetical situation are based on the project archaeologist's considerable past experience in conducting similar investigations. Only that part of the Phase II investigation involving field investigations is addressed in this report. Costs for literature review, laboratory analysis, report preparation, etc., are not included. The project manager proposed the use of this technique for the fol lowing logistic, safety and budgetary reasons.
Resumo:
Summary : Four distinct olfactory subsystems compose the mouse olfactory system, the main olfactory epithelium (MOE), the septal organ of Masera (SO), the vomeronasal organ (VNO) and the Grueneberg ganglion (GG). They are implicated in the sensory modalities of the animal and they evolved to analyse and discriminate molecules carrying chemical messages, such as odorants and pheromones. In this thesis, the VNO, principally implicated in pheromonal communications as well as the GG, which had no function attributed until this work, were investigated from their morphology to their physiological functions, using an array of biochemical and physiological methods. First, the roles of a particular protein, the CNGA4 ion channel, were investigated in the VNO. In the MOE, CNGA4 is expressed as a modulatory channel subunit implicated in odour discrimination and adaptation. Interestingly, this calcium channel is the unique member of the cyclic nucleotide-gated (CNG) family to be expressed in the VNO and up to this work its functions remained unknown. Using a combination of transgenic and knockout mice, as well as histological and physiological approaches, we have characterized CNGA4 expression in the VNO. A strong expression in immature neurons was found as well as in the microvilli of mature neurons (putative site of chemodetection). Interestingly and confirming its dual localisation, the genetic invalidation of the CNGA4 channel has, as consequences, a strong impairment in vomeronasal maturation as well as deficit in pheromone sensing. Thus the CNGA4 channel appears to be a multifunctional protein in the mouse VNO playing essential role(s) in this organ. During the second part of the work, the morphology of the most recently described olfactory subsystem, the Grueneberg ganglion, was investigated in detail. Interestingly we found that glial cells and ciliated neurons compose this olfactory ganglion. This particular morphological aspect was similar to the olfactory AWC neurons from C. elegans which was used for further comparisons. Thus as for AWC neurons, we found that GG neurons are sensitive to temperature changes and are able to detect highly volatile molecules. Indeed, the presence of alarm pheromones (APs) secreted by stressed mice, elicit strong cellular responses, as well as a GG dependent behavioural changes. Investigations on the signaling elements present in GG neurons revealed that, as for AWC neurons, or pGC-D expressing neurons from the MOE, proteins participating in a cGMP pathway were found in GG neurons such as pGC-G and CNGA3 channels. These two proteins might be implicated in chemosensing as well as in thermosensing, two apparent properties of this organ. In this thesis, the multisensory modalities of two mouse olfactory subsystems were described and are related to a high degree of complexity required for the animal to sense its environment
Resumo:
The staphylococci are an ever-present threat in our world, capable of causing a wide range of infections, and are a persistent presence in the clinical environment. As the number of antimicrobial compounds effective against staphylococci decreases, because of the acquisition and spread of antibiotic resistance, there is a growing need for novel therapeutic molecules. Intra and inter-species communication (quorum sensing) is a biologically significant phenomenon that has been associated with virulence, intracellular survival, and biofilm formation. Quorum sensing molecules of staphylococci and other species (e.g. Pseudomonas aeruginosa) can inhibit virulence factor production and/or growth of staphylococci, leading to the possibility that interference with staphylococcal quorum-sensing systems could be a way of controlling the diverse infections caused by the staphylococci. In this article, we discuss the potential of quorum-sensing systems of staphylococci as therapeutic targets.
Resumo:
Two portable Radio Frequency IDentification (RFID) systems (made by Texas Instruments and HiTAG) were developed and tested for bridge scour monitoring by the Department of Civil and Environmental Engineering at the University of Iowa (UI). Both systems consist of three similar components: 1) a passive cylindrical transponder of 2.2 cm in length (derived from transmitter/responder); 2) a low frequency reader (~134.2 kHz frequency); and 3) an antenna (of rectangular or hexagonal loop). The Texas Instruments system can only read one smart particle per time, while the HiTAG system was successfully modified here at UI by adding the anti-collision feature. The HiTAG system was equipped with four antennas and could simultaneously detect 1,000s of smart particles located in a close proximity. A computer code was written in C++ at the UI for the HiTAG system to allow simultaneous, multiple readouts of smart particles under different flow conditions. The code is written for the Windows XP operational system which has a user-friendly windows interface that provides detailed information regarding the smart particle that includes: identification number, location (orientation in x,y,z), and the instance the particle was detected.. These systems were examined within the context of this innovative research in order to identify the best suited RFID system for performing autonomous bridge scour monitoring. A comprehensive laboratory study that included 142 experimental runs and limited field testing was performed to test the code and determine the performance of each system in terms of transponder orientation, transponder housing material, maximum antenna-transponder detection distance, minimum inter-particle distance and antenna sweep angle. The two RFID systems capabilities to predict scour depth were also examined using pier models. The findings can be summarized as follows: 1) The first system (Texas Instruments) read one smart particle per time, and its effective read range was about 3ft (~1m). The second system (HiTAG) had similar detection ranges but permitted the addition of an anti-collision system to facilitate the simultaneous identification of multiple smart particles (transponders placed into marbles). Therefore, it was sought that the HiTAG system, with the anti-collision feature (or a system with similar features), would be preferable when compared to a single-read-out system for bridge scour monitoring, as the former could provide repetitive readings at multiple locations, which could help in predicting the scour-hole bathymetry along with maximum scour depth. 2) The HiTAG system provided reliable measures of the scour depth (z-direction) and the locations of the smart particles on the x-y plane within a distance of about 3ft (~1m) from the 4 antennas. A Multiplexer HTM4-I allowed the simultaneous use of four antennas for the HiTAG system. The four Hexagonal Loop antennas permitted the complete identification of the smart particles in an x, y, z orthogonal system as function of time. The HiTAG system can be also used to measure the rate of sediment movement (in kg/s or tones/hr). 3) The maximum detection distance of the antenna did not change significantly for the buried particles compared to the particles tested in the air. Thus, the low frequency RFID systems (~134.2 kHz) are appropriate for monitoring bridge scour because their waves can penetrate water and sand bodies without significant loss of their signal strength. 4) The pier model experiments in a flume with first RFID system showed that the system was able to successfully predict the maximum scour depth when the system was used with a single particle in the vicinity of pier model where scour-hole was expected. The pier model experiments with the second RFID system, performed in a sandbox, showed that system was able to successfully predict the maximum scour depth when two scour balls were used in the vicinity of the pier model where scour-hole was developed. 5) The preliminary field experiments with the second RFID system, at the Raccoon River, IA near the Railroad Bridge (located upstream of 360th street Bridge, near Booneville), showed that the RFID technology is transferable to the field. A practical method would be developed for facilitating the placement of the smart particles within the river bed. This method needs to be straightforward for the Department of Transportation (DOT) and county road working crews so it can be easily implemented at different locations. 6) Since the inception of this project, further research showed that there is significant progress in RFID technology. This includes the availability of waterproof RFID systems with passive or active transponders of detection ranges up to 60 ft (~20 m) within the water–sediment column. These systems do have anti-collision and can facilitate up to 8 powerful antennas which can significantly increase the detection range. Such systems need to be further considered and modified for performing automatic bridge scour monitoring. The knowledge gained from the two systems, including the software, needs to be adapted to the new systems.
Resumo:
Abstract