906 resultados para DYNAMICS SIMULATIONS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanisms underlying the increase in stress for large mechanical strains of a polymer glass, quantified by the strain-hardening modulus, are still poorly understood. In the present paper we aim to elucidate this matter and present new mechanisms. Molecular-dynamics simulations of two polymers with very different strain-hardening moduli (polycarbonate and polystyrene) have been carried out. Nonaffine displacements occur because of steric hindrances and connectivity constraints. We argue that it is not necessary to introduce the concept of entanglements to understand strain hardening, but that hardening is rather coupled with the increase in the rate of nonaffine particle displacements. This rate increases faster for polycarbonate, which has the higher strain-hardening modulus. Also more nonaffine chain stretching is present for polycarbonate. It is shown that the inner distances of such a nonaffinely deformed chain can be well described by the inner distances of the worm-like chain, but with an effective stiffness length (equal to the Kuhn length for an infinite worm-like chain) that increases during deformation. It originates from the finite extensibility of the chain. In this way the increase in nonaffine particle displacement can be understood as resulting from an increase in the effective stiffness length of the perturbed chain during deformation, so that at larger strains a higher rate of plastic events in terms of nonaffine displacement is necessary, causing in turn the observed strain hardening in polymer glasses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tetraprotonated form of the dioxatetraazamacrocycle, 6,19-dioxa-3,9,16,22-tetraaza[22.2.2.2(11,14)]-triaconta-1(26),11,13,24, 27,29-hexaene, (H4L1)(4+), was used as the receptor for binding studies with carboxylate anionic substrates of different shapes, sizes, and charges [succinate (suc(2-)), cyclo- hexanetricarboxylate (cta(3-)), phthalate (ph(2-)), isophthalate (iph(2-)), terephthalate (tph(2-)), and benezenetricarboxylate (btc(3-))]. Association constants were determined by potentiometry in aqueous solution at 298.2 K and 0.10 M KCl and by H-1 NMR titration in D2O. The strongest association was found for the btc3- anion at 5-7 pH region. From both techniques it was possible to establish the binding preference trend of the receptor for the different substrates, and the H-1 NMR spectroscopy gave important suggestions about the type of interactions between partners and the location of the substrates in the supramolecular entities formed. The effective binding constants at pH 6 follow the order: btc(3-)>iph(2-)>cta(3-) =ph(2-)>tph(2-)>suc(2-). All the studies suggest that the anionic substrates bind to the receptor via N-H center dot center dot center dot O = C hydrogen bonds and electrostatic interactions, and the aromatic substrates can also establish pi-pi stacking interactions. The crystal structures of (H4L1)(4+) and its supramolecular assemblies with ph(2-) and tph(2-) were determined by X-ray diffraction. The last two structures showed that the association process in solid state occurs via multiple N-H center dot center dot center dot O = C hydrogen bonds with the anionic substrate located outside the macrocyclic cavity of the receptor. Molecular dynamics simulations carried out for the association of (H4L1)(4+) with tph(2-) and btC(3-) in water solution established at atomic level the existence of all interactions suggested by the experimental studies, which act cooperatively in the binding process. Furthermore, the binding free energies were estimated and the values are in agreement with the experimental ones, indicating that the binding of these two anionic substrates occurs into the receptor cavity. However, the tph(2-) has also propensity to leave the macrocyclic cavity and its molecular recognition can also happen at the top of the receptor. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thallium cation complexation by calix[4]tubes has been investigated by a combination of (TI)-T-205, H-1 NMR and ES MS demonstrating the solution formation of a dithallium complex in which the cations are held in the calix[4]arene cavities. In addition, the structure of the complex has been determined in the solid state revealing the cations to be held exclusively by pi-cation interactions. Furthermore, this crystal structure has been used as the basis for molecular dynamics simulations to confirm that binding of the smaller K+ cation in the calix[4]tube cryptand like array occurs via the axial route featuring a g-cation intermediate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The terpenoid chiral selectors dehydroabietic acid, 12,14-dinitrodehydroabietic acid and friedelin have been covalently linked to silica gel yielding three chiral stationary phases CSP 1, CSP 2 and CSP 3, respectively. The enantiodiscriminating capability of each one of these phases was evaluated by HPLC with four families of chiral aromatic compounds composed of alcohols, amines, phenylalanine and tryptophan amino acid derivatives and beta-lactams. The CSP 3 phase, containing a selector with a large friedelane backbone is particularly suitable for resolving free alcohols and their derivatives bearing fluorine substituents, while CSP 2 with a dehydroabietic architecture is the only phase that efficiently discriminates 1, 1'-binaphthol atropisomers. CSP 3 also gives efficient resolution of the free amines. All three phases resolve well the racemates of N-trifluoracetyl and N-3,5-dinitrobenzoyl phenylalanine amino acid ester derivatives. Good enantioseparation of beta-lactams and N-benzoyl tryptophan amino acid derivatives was achieved on CSP 1. In order to understand the structural factors that govern the chiral molecular recognition ability of these phases, molecular dynamics simulations were carried out in the gas phase with binary diastereomeric complexes formed by the selectors of CSP 1 and CSP 2 and several amino acid derivatives. Decomposition of molecular mechanics energies shows that van der Waals interactions dominate the formation of the diastereomeric transient complexes while the electrostatic binding interactions are primarily responsible for the enantioselective binding of the (R)- and (S)-analytes. Analysis of the hydrogen bonds shows that electrostatic interactions are mainly associated with the formation of N-(HO)-O-...=C enantio selective hydrogen bonds between the amide binding sites from the selectors and the carbonyl groups of the analytes. The role of mobile phase polarity, a mixture of n-hexane and propan-2-ol in different ratios, was also evaluated through molecular dynamics simulations in explicit solvent. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phase diagram of cyclopentane has been studied by powder neutron diffraction, providing diffraction patterns for phases I, II, and III, over a range of temperatures and pressures. The putative phase IV was not observed. The structure of the ordered phase III has been solved by single-crystal diffraction. Computational modeling reveals that there are many equienergetic ordered structures for cyclopentane within a small energy range. Molecular dynamics simulations reproduce the structures and diffraction patterns for phases I and III and also show an intermediate disordered phase, which is used to interpret phase II.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crystal structure of 4-phenyl-benzaldehyde reveals the presence of a dimer linked by the C=O and C( 9)-H groups of adjacent molecules. In the liquid phase, the presence of C-(HO)-O-... bonded forms is revealed by both vibrational and NMR spectroscopy. A Delta H value of - 8.2 +/- 0.5 kJ mol(-1) for the dimerisation equilibrium is established from the temperature-dependent intensities of the bands assigned to the carbonyl-stretching modes. The NMR data suggest the preferential engagement of the C(2,6)-H and C(10/12)/C(11)-H groups as hydrogen bond donors, instead of the C(9)-H group. While ab initio calculations for the isolated dimers are unable to corroborate these NMR results, the radial distribution functions obtained from molecular dynamics simulations show a preference for C(2,6)-H and C(10/12)/C(11)-(HO)-O-... contacts relative to the C(9)-(HO)-O-... ones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The self-assembly of a peptide based on a sequence from the amyloid beta peptide but incorporating the non-natural amino acid beta-2-thienylalanine (2-Thi) has been investigated in aqueous and methanol solutions. The peptide AAKLVFF was used as a design motif, replacing the phenylalanine residues (F) with 2-Thi units to yield (2-Thi)(2-Thi)VLKAA. The 2-Thi residues are expected to confer interesting electronic properties due to charge delocalization and pi-stacking. The peptide is shown to form beta-sheet-rich amyloid fibrils with a twisted morphology, in both water and methanol solutions at sufficiently high concentration. The formation of a self-assembling hydrogel is observed at high concentration. Detailed molecular modeling using molecular dynamics methods was performed using NOE constraints provided by 2D-NMR experiments. The conformational and charge properties of 2-Thi were modeled using quantum mechanical methods, and found to be similar to those previously reported for the beta-3-thienylalanine analogue. The molecular dynamics simulations reveal well-defined folded structures (turn-like) in dilute aqueous solution, driven by self-assembly of the hydrophobic aromatic units, with charged lysine groups exposed to water.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structure of single wall peptide nanotubes is presented for the model surfactant-like peptide A6K. Capillary flow alignment of a sample in the nematic phase at high concentration in water leads to oriented X-ray diffraction patterns. Analysis of these, accompanied by molecular dynamics simulations, suggests the favourable self-assembly of antiparallel peptide dimers into beta-sheet ribbons that wrap helically to form the nanotube wall.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The conformation of a model peptide AAKLVFF based on a fragment of the amyloid beta peptide A beta 16-20, KLVFF, is investigated in methanol and water via solution NMR experiments and Molecular dynamics computer simulations. In previous work, we have shown that AAKLVFF forms peptide nanotubes in methanol and twisted fibrils in water. Chemical shift measurements were used to investigate the solubility of the peptide as a function of concentration in methanol and water. This enabled the determination of critical aggregation concentrations, The Solubility was lower in water. In dilute solution, diffusion coefficients revealed the presence of intermediate aggregates in concentrated solution, coexisting with NMR-silent larger aggregates, presumed to be beta-sheets. In water, diffusion coefficients did not change appreciably with concentration, indicating the presence mainly of monomers, coexisting with larger aggregates in more concentrated solution. Concentration-dependent chemical shift measurements indicated a folded conformation for the monomers/intermediate aggregates in dilute methanol, with unfolding at higher concentration. In water, an antiparallel arrangement of strands was indicated by certain ROESY peak correlations. The temperature-dependent solubility of AAKLVFF in methanol was well described by a van't Hoff analysis, providing a solubilization enthalpy and entropy. This pointed to the importance of solvophobic interactions in the self-assembly process. Molecular dynamics Simulations constrained by NOE values from NMR suggested disordered reverse turn structures for the monomer, with an antiparallel twisted conformation for dimers. To model the beta-sheet structures formed at higher concentration, possible model arrangements of strands into beta-sheets with parallel and antiparallel configurations and different stacking sequences were used as the basis for MD simulations; two particular arrangements of antiparallel beta-sheets were found to be stable, one being linear and twisted and the other twisted in two directions. These structures Were used to simulate Circular dichroism spectra. The roles of aromatic stacking interactions and charge transfer effects were also examined. Simulated spectra were found to be similar to those observed experimentally.(in water or methanol) which show a maximum at 215 or 218 nm due to pi-pi* interactions, when allowance is made for a 15-18 nm red-shift that may be due to light scattering effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ligands such as CO, O2, or NO are involved in the biological function of myoglobin. Here we investigate the energetics and dynamics of NO interacting with the Fe(II) heme group in native myoglobin using ab initio and molecular dynamics simulations. At the global minimum of the ab initio potential energy surface (PES), the binding energy of 23.4 kcal/mol and the Fe-NO structure compare well with the experimental results. Interestingly, the PES is found to exhibit two minima: There exists a metastable, linear Fe-O-N minimum in addition to the known, bent Fe-N-O global minimum conformation. Moreover, the T-shaped configuration is found to be a saddle point, in contrast to the corresponding minimum for NO interacting with Fe(III). To use the ab initio results for finite temperature molecular dynamics simulations, an analytical function was fitted to represent the Fe-NO interaction. The simulations show that the secondary minimum is dynamically stable up to 250 K and has a lifetime of several hundred picoseconds at 300 K. The difference in the topology of the heme-NO PES from that assumed previously (one deep, single Fe-NO minimum) suggests that it is important to use the full PES for a quantitative understanding of this system. Why the metastable state has not been observed in the many spectroscopic studies of myoglobin interacting with NO is discussed, and possible approaches to finding it are outlined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The motion in concentrated polymer systems is described by either the Rouse or the reptation model, which both assume that the relaxation of each polymer chain is independent of the surrounding chains. This, however, is in contradiction with several experiments. In this Letter, we propose a universal description of orientation coupling in polymer melts in terms of the time-dependent coupling parameter κ(t). We use molecular dynamics simulations to show that the coupling parameter increases with time, reaching about 50% at long times, independently of the chain length or blend composition. This leads to predictions of component dynamics in mixtures of different molecular weights from the knowledge of monodisperse dynamics for unentangled melts. Finally, we demonstrate that entanglements do not play a significant role in the observed coupling. © 2010 The American Physical Society

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This short contribution examines the difficulties that have not yet been fully overcome in the many developments made from the simplest (and original) tube model for entangled polymers. It is concluded that many more length scales have to be considered sequentially when deriving a continuum rheological model from molecular considerations than have been considered in the past. In particular, most unresolved issues of the tube theory are related to the length scales of tube diameter, and molecular dynamics simulations is the perfect route to resolve them. The power of molecular simulations is illustrated by two examples: stress contributions from bonded and non-bonded interaction, and the inter-chain coupling, which is usually neglected in the tube theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The topic of this work is 3d transition metals deposited on graphite. Spin-polarised density-functional calculations are used to obtain the magnetic moments of deposited adatoms and dimers. Interatomic potentials are also deduced. These are used in molecular dynamics simulations to study cluster formation and to investigate cluster morphology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the results of first systematic studies of organic adsorption from aqueous solutions onto relatively long single walled carbon nanotubes (four tubes, in initial and oxidised forms). Using molecular dynamics simulations (GROMACS package) we discuss the behaviour of tube-water as well as tube-adsorbate systems, for three different adsorbates (benzene, phenol and paracetamol).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES: The prediction of protein structure and the precise understanding of protein folding and unfolding processes remains one of the greatest challenges in structural biology and bioinformatics. Computer simulations based on molecular dynamics (MD) are at the forefront of the effort to gain a deeper understanding of these complex processes. Currently, these MD simulations are usually on the order of tens of nanoseconds, generate a large amount of conformational data and are computationally expensive. More and more groups run such simulations and generate a myriad of data, which raises new challenges in managing and analyzing these data. Because the vast range of proteins researchers want to study and simulate, the computational effort needed to generate data, the large data volumes involved, and the different types of analyses scientists need to perform, it is desirable to provide a public repository allowing researchers to pool and share protein unfolding data. METHODS: To adequately organize, manage, and analyze the data generated by unfolding simulation studies, we designed a data warehouse system that is embedded in a grid environment to facilitate the seamless sharing of available computer resources and thus enable many groups to share complex molecular dynamics simulations on a more regular basis. RESULTS: To gain insight into the conformational fluctuations and stability of the monomeric forms of the amyloidogenic protein transthyretin (TTR), molecular dynamics unfolding simulations of the monomer of human TTR have been conducted. Trajectory data and meta-data of the wild-type (WT) protein and the highly amyloidogenic variant L55P-TTR represent the test case for the data warehouse. CONCLUSIONS: Web and grid services, especially pre-defined data mining services that can run on or 'near' the data repository of the data warehouse, are likely to play a pivotal role in the analysis of molecular dynamics unfolding data.