784 resultados para DUAL-CURED COMPOSITES
Effect of particle morphology on the mechanical and thermo-mechanical behavior of polymer composites
Resumo:
Fiber reinforced polymer composites have been used in many applications, such as in automobile, aerospace and naval industries, due basically to their high strength-to-weight and modulus-to-weight, among other properties. Even though particles are usually not able to lead to the level of reinforcement of fibers, particle reinforced polymer composites have been proposed for many new applications due to their low cost, easy fabrication and isotropic properties. In this work, polymer composites were prepared by incorporating glass particles of different morphologies on poly(aryl sulfones) matrices. Particles with aspect ratios equal to 1, 2.5 and 10 were used. The prepared composites were characterized using electron microscopy and thermal analysis. Mechanical properties of the composites were evaluated using a four-point bending test. The thermo-mechanical behavior of the obtained composites was also investigated. The results showed that the morphology of the particles alter significantly the mechanical properties of composites. Particles with larger values of aspect ratio led to large elastic modulus but low levels of strain at failure. This result was explained by modeling the thermo-mechanical behavior of the composites using a viscoelastic model. Parameters of the model, obtained from a Cole-Cole type of plot, demonstrated that interactions at the polymer-reinforcing agent interface were higher for composites with large aspect ratio particles. Higher levels of interactions at interfaces can lead to higher degrees of stress transfer and, consequently, to composites with large elastic modulus, as experimentally observed.
Resumo:
The main aim of this thesis is to study the effect of mineral fillers on the properties of extruded wood-polypropylene composites (WPC). The studied minerals are Talc, Calcite (CaCO3), two quantities of Wollastonite and Soapstone, and the level of mineral addition is 20 w-%. The study shows that mineral fillers can be used to modify and improve the properties of woodplastic composites. Especially the moisture-related properties of WPCs were found to be improved significantly by mineral addition. As the WPCs of the studied type are commonly used in outdoor applications, this is of importance in terms of usability. In machining, the addition of two minerals retained the surface roughness at same level throughout the test, indicating a favorable effect on machinability. The use of hard minerals shortened the tool life in machining. In general, a modest increase in density was observed. In many of the studied properties, no apparent influence of mineral addition was found, indicating that the properties were not weakened. An overall result was that talc showed the best overall performance, indicating that it can be used as an active filler improving most of the studied properties, especially moisture resistance. Calcite was found to have nearly similar performance. According to the findings, mineral addition to wood-plastic composites appears to be beneficial; especially moisture resistance can be enhanced without diminishing the other properties or usability in general.
Resumo:
Tool center point calibration is a known problem in industrial robotics. The major focus of academic research is to enhance the accuracy and repeatability of next generation robots. However, operators of currently available robots are working within the limits of the robot´s repeatability and require calibration methods suitable for these basic applications. This study was conducted in association with Stresstech Oy, which provides solutions for manufacturing quality control. Their sensor, based on the Barkhausen noise effect, requires accurate positioning. The accuracy requirement admits a tool center point calibration problem if measurements are executed with an industrial robot. Multiple possibilities are available in the market for automatic tool center point calibration. Manufacturers provide customized calibrators to most robot types and tools. With the handmade sensors and multiple robot types that Stresstech uses, this would require great deal of labor. This thesis introduces a calibration method that is suitable for all robots which have two digital input ports free. It functions with the traditional method of using a light barrier to detect the tool in the robot coordinate system. However, this method utilizes two parallel light barriers to simultaneously measure and detect the center axis of the tool. Rotations about two axes are defined with the center axis. The last rotation about the Z-axis is calculated for tools that have different width of X- and Y-axes. The results indicate that this method is suitable for calibrating the geometric tool center point of a Barkhausen noise sensor. In the repeatability tests, a standard deviation inside robot repeatability was acquired. The Barkhausen noise signal was also evaluated after recalibration and the results indicate correct calibration. However, future studies should be conducted using a more accurate manipulator, since the method employs the robot itself as a measuring device.
Resumo:
Within the framework of the working memory model proposed by A. Baddeley and G. Hitch, a dual-task paradigm has been suggested to evaluate the capacity to perform simultaneously two concurrent tasks. This capacity is assumed to reflect the functioning of the central executive component, which appears to be impaired in patients with dysexecutive syndrome. The present study extends the investigation of an index ("mu"), which is supposed to indicate the capacity of coordination of concurrent auditory digit span and tracking tasks, by testing the influence of training on the performance in the dual task. The presentation of the same digit sequence lists or always-different lists did not differently affect the performance. The span length affected the mu values. The improved performance in the tasks under the dual condition closely resembled the improvement in the single-task performance. So, although training improved performance in the single and dual conditions, especially for the tracking component, the mu values remained stable throughout the sessions when the single tasks were performed first. Conversely, training improved the capacity of dual-task coordination throughout the sessions when dual task was performed first, addressing the issue of the contribution of the within-session practice to the mu index.
Resumo:
The measure "mu", proposed as an index of the ability to coordinate concurrent box-crossing (BC) and digit-span (DS) tasks in the dual task (DT), should reflect the capacity of the executive component of the working memory system. We investigated the effect of practice in BC and of a change in the digit span on mu by adding previous practice trials in BC and diminishing, maintaining or increasing the digit sequence length. The mu behavior was evaluated throughout three trials of the test. Reported strategies in digit tasks were also analyzed. Subjects with diminished span showed the best performance in DT due to a stable performance in DS and BC in the single- and dual-task conditions. These subjects also showed a more stable performance throughout trials. Subjects with diminished span tended to employ effortless strategies, whereas subjects with increased span employed effort-requiring strategies and showed the lowest means of mu. Subjects with initial practice trials showed the best performance in BC and the most differentiated performance between the single- and dual-task conditions in BC. The correlation coefficient between the mu values obtained in the first and second trials was 0.814 for subjects with diminished span and practice trials in BC. It seems that the within-session practice in BC and the performance variability in DS affect the reliability of the index mu. To control these factors we propose the introduction of previous practice trials in BC and a modification of the current method to determine the digit sequence length. This proposal should contribute to the development of a more reliable method to evaluate the executive capacity of coordination in the dual-task paradigm.
Resumo:
Using cellulosic reinforcement to produce plastic composites is a globally growing trend. One of such materials are wood-plastic composites, which are an extensively studied group of materials for which the global industry is looking for new applications. Issues such as bondability, durability and fire resistance still require development to improve the usability of the wood-plastic composite material. Improvement of the usability of wood-plastic composites is studied in this thesis through the effects of using selected modification technology in wood and plastic industry. The applied modification methods are surface by mechanical abrasion and plasma, chemical impregnation of wood flour, and structural modification by the co-extrusion process. The study shows that the properties of WPC can be influenced by the selected modification methods. The selected methods are also found to be able to result as improvement in the properties of the material. The may also affect other than just the targeted properties of the end-product, either in a positive or a negative manner. Therefore modification as performance improvement should be considered as a caseby- case study. Introducing WPC materials for new applications can be done by using modification technology. Structuralmodification can possibly be used to reduce material costs of the modified WPC material.
Resumo:
The main aim of this thesis is to study the effect of pigments on the weathering properties of wood-polypropylene composites (WPC). The studied properties are color change, water absorption, thickness swelling and Charpy impact strength. The impact of weathering and UV exposure on WPCs was studied by using pigments and minerals as protective agents. The study shows that the pigments and/or mineral fillers can be used to improve the weathering properties of WPCs. The effect of pigments was found to vary with the type of pigment and the method of weathering. The black pigment, an inorganic carbon black master-batch, was found to be the most effective one in reduction of the discoloration of WPCs. By preventing discoloration, and further reducing the degradation of the surface of the WPC, the pigments were found to reduce the decrease in the impact strength after weathering. As well as UV protection, the moisture resistance is a significant factor affecting the durability of WPCs. The addition of mineral fillers was found to improve the moisture-related properties, such as water absorption and thickness swelling, of WPC significantly. According to the findings, addition of pigments and mineral fillers to wood-polypropylene composites appears to be beneficial: color stability and moisture resistance can be enhanced especially in outdoor weathering. The combined effect of black pigment (carbon black master-batch) and wollastonite as a mineral filler was found to bring about the most effective properties against weathering.
Resumo:
The main objective of this thesis is to study the impact of different mineral fillers and fire retardants on the reaction-to-fire properties of extruded/coextruded wood-plastic composites (WPCs). The impact of additives on the flammability properties of WPCs is studied by cone calorimetry. The studied properties are ignition time, peak heat release rate, total heat release, total smoke production, and mass loss rate. The effects of mineral fillers and fire retardants were found to vary with the type of additive, the type of additive combinations, the amount of additives, as well as the production method of the WPCs. The study shows that talc can be used to improve the properties of extruded WPCs. Especially ignition time, peak heat release rate and mass loss rate were found to be improved significantly by talc. The most significant improvement in the fire retardancy of coextruded WPCs was achieved in combinations of natural graphite and melamine. Ignition time, peak heat release rate and total smoke production were improved essentially. High increase in smoke production was found in samples where the amount of ammonium polyphosphate was 10% or higher. Coextrusion as a structural modification was found as a promising way to improve the flammability properties of composite materials in a cost-effective way.
Resumo:
Visceral leishmaniasis (VL), also known as kala-azar, is an important public health problem. If not treated, virtually all clinically symptomatic patients die within months. The diagnosis is based on the Montenegro skin test (MST) and anti-Leishmania titers. Nevertheless, the time required for cured individuals living in a leishmaniasis-endemic area to present a positive skin test and negative anti-Leishmania serology is known. To determine the cellular and humoral immune response profile in relation to different times post-VL cure, a cross-sectional study was conducted on subjects from a kala-azar endemic area in Paço do Lumiar, MA, Brazil, on the basis of 1995-2005 notifications reported by the National Health Foundation/Regional Coordination of Maranhão. We visited cured individuals with a history of VL within the last 10 years. Seventy-four subjects (30 females) ranging in age from 1 to 44 years were included, all of them symptom free at the time of the study. A cellular immune response was observed in 73 (98.6%) subjects, whereas no significant antibody titers were detected by indirect immunofluorescence (IIF) in the sera of 69 (93.2%) cases. Ten years post-cure, 39 (52%) subjects had a positive MST and negative IIF reaction, while in one subject the skin and anti-Leishmania serology tests were negative. Two other subjects were positive in both tests 1 year after cure. These data suggest that a cellular immune response may still be present in subjects cured of VL regardless of post-cure time, and that the parasite persists in the host after clinical cure of the disease. This would explain the persistence of significant Leishmania sp antibody titers in some subjects after treatment.
Resumo:
The impact of a recycled mineral wool filler on the various properties of wood plastic composites was studied and the critical factors affecting the formation of the properties were determined. An estimation of the volume of mineral wool fiber waste generated in the European Union between the years 2010-2020 was presented. Furthermore, the effect of fiber pre-treatment on the properties of the wood plastic composites were studied, and the environmental performance of a wood plastic composite containing recycled mineral fibers was assessed. The results showed that the volumes of construction and demolition waste and new mineral wool produced in the European Union are growing annually, and therefore also the volumes of recycled mineral wool waste generated are increasing. The study showed that the addition of recycled mineral wool into composites can enhance some of the mechanical properties and increase the moisture resistance properties of the composites notably. Recycled mineral wool as a filler in wood plastic composites can also improve the fire resistance properties of composites, but it does not protect the polymer matrix from pyrolysis. Fiber pre-treatment with silane solution improved some of the mechanical properties, but generally the use of maleated polypropylene as the coupling agent led to better mechanical and moisture resistance properties. The environmental performance of recycled mineral wool as the filler in wood plastic composites was superior compared to glass fibers. According to the findings, recycled mineral wool fibers can provide a technically and environmentally viable alternative to the traditional inorganic filler materials used in wood plastic composites.
Resumo:
The aim of this study was to determine the colorimetric and sensory characteristics of a fermented cured sausage containing ostrich meat (Struthio camelus) and pork meat. Four treatments were performed: one with no ostrich meat (TC) and the others containing 19.08 (T1), 38.34 (T2), and 57.60% (T3) of ostrich meat and pork meat. Colorimetric analyses were measuring L*, a*, b*, C*, and hº. Sensory analysis was conducted assessing color, aroma, flavor, and texture at the end of the sausages' processing. The sausages containing ostrich meat were statistically different from the control in the instrumental colorimetric analysis. In the sensory analysis, no significant differences were observed between the treatments for aroma, flavor, and texture. However, significant differences were found in the color of the sausages due to the high myoglobin content present in the ostrich meat, which resulted in a very dark color in the treatment with the highest percentage of this type of meat.
Resumo:
The removal of organics from copper electrolyte solutions after solvent extraction by dual media filtration is one of the most efficient ways to ensure the clean electrolyte flow into the electrowinning. The clean electrolyte will ensure the good quality cathode plate production. Dual media filtration uses two layers of filter media for filtration as anthracite and garnet respectively. The anthracite layer will help the coalescing of the entrained organic droplets which will then float to the top of the filter, and back to the solvent extraction process. The garnet layer will catch any solids left in the electrolyte traveling through the filter media. This thesis will concentrate on characterization of five different anthracites in order to find some differences using specific surface area analysis, particle size analysis, and morphology analysis. These results are compared to the pressure loss values obtained from lab column tests and bed expansion behavior. The goal of the thesis was to find out if there were any differences in the anthracite which would make the one perform better than the other. There were no big differences found on any aspect of the particle characterization, but some found differences should be further studied in order to confirm the meaning of the porosity, surface area, intensity mean and intensity SD (Standard Deviation) on anthracites and their use in dual media filtration. The thesis work analyzed anthracite samples the way that is not found on any public literature sources, and further studies on the issue would bring more knowledge to the electrolyte process.
Resumo:
The interest towards wood-plastic composites (WPCs) is growing due to growing interest in materials with novel properties, which can replace more traditional materials, such as wood and plastic. The use of recycled materials in manufacture is also a bonus. However, the application ofWPCs has been limited because of their often poor mechanical and barrier properties, which can be improved by incorporation of the reinforcing fillers. Nanosized fillers, having a large surface area, can significantly increase interfacial interactions in the composite on molecular level, leading to materials with new properties. The review summarizes the development trends in the use on nanofillers for WPC design, which were reported in accessible literature during the last decade. The effect of the nanofillers on the mechanical properties, thermal stability, flammability and wettability ofWPC is discussed.
Resumo:
Electrochromism, the phenomenon of reversible color change induced by a small electric charge, forms the basis for operation of several devices including mirrors, displays and smart windows. Although, the history of electrochromism dates back to the 19th century, only the last quarter of the 20th century has its considerable scientific and technological impact. The commercial applications of electrochromics (ECs) are rather limited, besides top selling EC anti-glare mirrors by Gentex Corporation and airplane windows by Boeing, which made a huge commercial success and exposed the potential of EC materials for future glass industry. It is evident from their patents that viologens (salts of 4,4ʹ-bipyridilium) were the major active EC component for most of these marketed devices, signifying the motivation of this thesis focusing on EC viologens. Among the family of electrochromes, viologens have been utilized in electrochromic devices (ECDs) for a while, due to its intensely colored radical cation formation induced by applying a small cathodic potential. Viologens can be synthesized as oligomer or in the polymeric form or as functionality to conjugated polymers. In this thesis, polyviologens (PVs) were synthesized starting from cyanopyridinium (CNP) based monomer precursors. Reductive coupling of cross-connected cyano groups yields viologen and polyviologen under successive electropolymerization using for example the cyclic voltammetry (CV) technique. For further development, a polyviologen-graphene composite system was fabricated, focusing at the stability of the PV electrochrome without sacrificing its excellent EC properties. High electrical conductivity, high surface area offered by graphene sheets together with its non-covalent interactions and synergism with PV significantly improved the electrochrome durability in the composite matrix. The work thereby continued in developing a CNP functionalized thiophene derivative and its copolymer for possible utilization of viologen in the copolymer blend. Furthermore, the viologen functionalized thiophene derivative was synthesized and electropolymerized in order to explore enhancement in the EC contrast and overall EC performance. The findings suggest that such electroactive viologen/polyviologen systems and their nanostructured composite films as well as viologen functionalized conjugated polymers, can be potentially applied as an active EC material in future ECDs aiming at durable device performances.