986 resultados para DOG KIDNEY-CELLS
Resumo:
The aim of this study was to identify possible disease-associated mutations in the canine homologue of the polycystic kidney disease gene 1 (PKD1) in Bull Terriers with autosomal dominant polycystic kidney disease. Messenger RNA was obtained from the blood or renal tissue of five Bull Terriers with the disease and four close relatives without the disease. Reverse transcription, PCR and 3' rapid amplification of cDNA ends were used to amplify the coding and 3' untranslated regions of this transcript. Comparison of PKD1 sequence between the affected and unaffected Bull Terriers, revealed six polymorphisms, but no disease-associated mutations.
Resumo:
Although many of the molecular interactions in kidney development are now well understood, the molecules involved in the specification of the metanephric mesenchyme from surrounding intermediate mesoderm and, hence, the formation of the renal progenitor population are poorly characterized. In this study, cDNA microarrays were used to identify genes enriched in the murine embryonic day 10.5 (E10.5) uninduced metanephric mesenchyme, the renal progenitor population, in comparison with more rostral derivatives of the intermediate mesoderm. Microarray data were analyzed using R statistical software to determine accurately genes differentially expressed between these populations. Microarray outliers were biologically verified, and the spatial expression pattern of these genes at E10.5 and subsequent stages of early kidney development was determined by RNA in situ hybridization. This approach identified 21 genes preferentially expressed by the E10.5 metanephric mesenchyme, including Ewing sarcoma homolog, 14-3-3 theta, retinoic acid receptor-alpha, stearoyl-CoA desaturase 2, CD24, and cadherin-11, that may be important in formation of renal progenitor cells. Cell surface proteins such as CD24 and cadherin-11 that were strongly and specifically expressed in the uninduced metanephric mesenchyme and mark the renal progenitor population may prove useful in the purification of renal progenitor cells by FACS. These findings may assist in the isolation and characterization of potential renal stem cells for use in cellular therapies for kidney disease.
Resumo:
Objective: The purpose of this study was to grow artificial blood vessels for autologous transplantation as arterial interposition grafts in a large animal model (dog). Method and results: Tubing up to 250 mm long, either bare or wrapped in biodegradable polyglycolic acid (Dexon) or nonbiodegradable polypropylene (Prolene) mesh, was inserted in the peritoneal or pleural cavity of dogs, using minimally invasive techniques, and tethered at one end to the wall with a loose suture. After 3 weeks the tubes and their tissue capsules were harvested, and the inert tubing was discarded. The wall of living tissue was uniformly 1-1.5 mm thick throughout its length, and consisted of multiple layers of myofibroblasts and matrix overlaid with a single layer of mesothelium. The myofibroblasts stained for a-smooth muscle actin, vimentin, and desmin. The bursting strength of tissue tubes with no biodegradable mesh scaffolds was in excess of 2500 mm Hg, and the suture holding strength was 11.5 N, both similar to that in dog carotid and femoral arteries. Eleven tissue tubes were transplanted as interposition grafts into the femoral artery of the same dog in which they were grown, and were harvested after 3 to 6.5 months. Eight remained patent during this time. At harvest, their lumens were lined with endothelium-like cells, and wall cells stained for alpha-actin, smooth muscle myosin, desmin and smoothelin; there was also a thick adventitia containing vasa vasorum. Conclusion: Peritoneal and pleural cavities of large animals can function as bioreactors to grow myofibroblast tubes for use as autologous vascular grafts.
Resumo:
This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater ( SW). Juvenile C. leucas captured in FW ( 3 mOsm l(-1) kg(-1)) were acclimated to SW ( 980 - 1,000 mOsm l(-1) kg(-1)) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l(-1) kg(-1). In SW, bull sharks had significantly higher plasma osmolarities ( 940 mOsm l(-1) kg(-1)) than FW-acclimated animals and were slightly hypoosmotic to the environment. Plasma Na+, Cl-, K+, Mg2+, Ca2+, urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na+/ K+-ATPase activity. Na+/ K+-ATPase activity in the gills and intestine was less than 1 mmol Pi mg(-1) protein h(-1) and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na+/ K+-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na+/ K+-ATPase activity was 5.6 +/- 0.8 and 9.2 +/- 0.6 mmol Pi mg(-1) protein h(-1), respectively. Na+/ K+-ATPase activity in the kidney of FW and SW acclimated animals was 8.4 +/- 1.1 and 3.3 +/- 1.1 Pi mg(-1) protein h(-1), respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.
Resumo:
Constitutive albumin uptake by the proximal tubule is achieved by a receptor-mediated process in which the Cl- channel, ClC-5, plays an obligate role. Here we investigated the functional interaction between ClC-5 and ubiquitin ligases Nedd4 and Nedd4-2 and their role in albumin uptake in opossum kidney proximal tubule (OK) cells. In vivo immunoprecipitation using an anti-HECT antibody demonstrated that ClC-5 bound to ubiquitin ligases, whereas glutathione S-transferase pull-downs confirmed that the C terminus of ClC-5 bound both Nedd4 and Nedd4-2. Nedd4-2 alone was able to alter ClC-5 currents in Xenopus oocytes by decreasing cell surface expression of ClC-5. In OK cells, a physiological concentration of albumin (10 mug/ml) rapidly increased cell surface expression of ClC-5, which was also accompanied by the ubiquitination of ClC-5. Albumin uptake was reduced by inhibiting either the lysosome or proteasome. Total levels of Nedd4-2 and proteasome activity also increased rapidly in response to albumin. Overexpression of ligase defective Nedd4-2 or knockdown of endogenous Nedd4-2 with small interfering RNA resulted in significant decreases in albumin uptake. In contrast, pathophysiological concentrations of albumin (100 and 1000 mug/ml) reduced the levels of ClC-5 and Nedd4-2 and the activity of the proteasome to the levels seen in the absence of albumin. These data demonstrate that normal constitutive uptake of albumin by the proximal tubule requires Nedd4-2, which may act via ubiquitination to shunt ClC-5 into the endocytic pathway.
Resumo:
One key role of the renal proximal tubule is the reabsorption of proteins from the glomerular filtrate by constitutive receptor-mediated endocytosis. In the opossum kidney (OK) renal proximal tubule cell line, inhibition of protein kinase C (PKC) reduces albumin uptake, although the isoforms involved and mechanisms by which this occurs have not been identified. We used pharmacological and molecular approaches to investigate the role of PKC-α in albumin endocytosis. We found that albumin uptake in OK cells was inhibited by the pan-PKC blocker bisindolylmaleimide-1 and the isoform-specific PKC blockers Go-6976 and 2',3,3',4,4'-hexahydroxy-1,1'-biphenyl-6,6'-dimethanol dimethyl ether, indicating a role for PKC-α. Overexpression of a kinase deficient PKC-α(K368R) but not wild-type PKC-α significantly reduced albumin endocytosis. Western blot analysis of fractionated cells showed an increased association of PKC-α-green fluorescent protein with the membrane fraction within 10-20 min of exposure to albumin. We used phalloidin to demonstrate that albumin induces the formation of clusters of actin at the apical surface of OK cells and that these clusters correspond to the location of albumin uptake. These clusters were not present in cells grown in the absence of albumin. In cells treated either with PKC inhibitors or overexpressing kinase-deficient PKC-α(K368R) this actin cluster formation was significantly reduced. This study identifies a role for PKC-α in constitutive albumin uptake in OK cells by mediating assembly of actin microfilaments at the apical membrane.
Resumo:
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists are increasingly used in patients with diabetes, and small studies have suggested a beneficial effect on renal function, but their effects on. extracellular matrix (ECM) turnover are unknown. The aims of this study were to investigate the effects of the PPAR-gamma agonist pioglitazone on growth and matrix production in human cortical fibroblasts (CF). Cell growth and ECM production and turnover were measured in human CF in the presence and absence of 1 and 3 muM pioglitazone. Exposure of CF to pioglitazone caused an antiproliferative (P < 0.0001) and hypertrophic (P < 0.0001) effect; reduced type IV collagen secretion (P < 0.01), fibronectin secretion (P < 0.0001), and proline incorporation (P < 0.0001); decreased MMP-9 activity (P < 0.05); and reduced tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 secretion (P < 0.001 and P < 0.0001, respectively). These effects were independent of TGF-beta1. A reduction in ECM production was similarly observed when CF were exposed to a selective PPAR-gamma agonist (L-805645) in concentrations that caused no toxicity, confirming the antifibrotic effects of pioglitazone were mediated through a PPAR-gamma-dependent mechanism. Exposure of CF to high glucose conditions induced an increase in the expression of collagen IV (P < 0.05), which was reversed both in the presence of pioglitazone (1 and 3 muM) and by L-805645. In summary, exposure of human CIF to pioglitazone causes an antiproliferative effect and reduces ECM production through mechanisms that include reducing TIMP activity, independent of TGF-beta1. These studies suggest that the PPAR-gamma agonists may have a specific role in ameliorating the course of progressive tubulointerstitial fibrosis under both normoglycemic and hyperglycemic states.
Resumo:
Most studies on kidney development have considered the interaction of the metanephric mesenchyme and the ureteric bud to be the major inductive event that maintains tubular differentiation and branching morphogenesis. The mesenchyme produces Gdnf, which stimulates branching, and the ureteric bud stimulates continued growth of the mesenchyme and differentiation of nephrons from the induced mesenchyme. Null mutation of the Wt1 gene eliminates outgrowth of the ureteric bud, but Gdnf has been identified as a target of Pax2, but not of Wt1. Using a novel system for microinjecting and electroporating plasmid expression constructs into murine organ cultures, it has been demonstrated that Vegfa expression in the mesenchyme is regulated by Wt1. Previous studies had identified a population of Flk1-expressing cells in the periphery of the induced mesenchyme, and adjacent to the stalk of the ureteric bud, and that Vegfa was able to stimulate growth of kidneys in organ culture. Here it is demonstrated that signaling through Flk1 is required to maintain expression of Pax2 in the mesenchyme of the early kidney, and for Pax2 to stimulate expression of Gdnf. However, once Gdnf stimulates branching of the ureteric bud, the Flk1-dependent angioblast signal is no longer required to maintain branching morphogenesis and induction of nephrons. Thus, this work demonstrates the presence of a second set of inductive events, involving the mesenchymal and angioblast populations, whereby Wt1-stimulated expression of Vegfa elicits an as-yet-unidentified signal from the angioblasts, which is required to stimulate the expression of Pax2 and Gdnf, which in turn elicits an inductive signal from the ureteric bud.
Resumo:
AIM: To develop a technique to estimate the volume of epithelial lining fluid (ELF) obtained during bronchoalveolar lavage (BAL) and pleural lavage (PL) in the dog, using the urea dilution method. METHODS: BAL and PL fluids were obtained by saline lavage of pulmonary and pleural cavities of nine clinically healthy mixed-breed dogs immediately after euthanasia. Cell counts in the BAL and PL fluids were measured using standard techniques. The concentration of ELF in each lavage fluid was calculated from the relative concentration of urea in plasma and in each type of lavage fluid. Cell counts in ELF were then calculated. RESULTS: There were substantially higher cell counts in ELF compared to BAL or PF fluid. However, nucleated cell counts in ELF could not be predicted from cell counts in BAL or PL fluid. CONCLUSIONS AND CLINICAL RELEVANCE: These results suggest that accurate assessment of cellular or non-cellular components in lavage fluids should include a calculation of the proportion of ELF recovered, using a method such as urea dilution.
Resumo:
Chronic kidney disease (CKD) is an increasingly common condition with limited treatment options that is placing a major financial and emotional burden on the community. The use of complementary and alternative medicines (CAMS) has increased many-fold over the past decade. Although several compelling studies show renal toxicities and an adverse outcome from use of some CAMS, there is also emerging evidence in the literature that some may be renoprotective. Many nephrologists are unaware of these potential therapeutic benefits in treating CKD, or they are reluctant to consider them in research trials for fear of adverse effects (including nephrotoxicity) or deleterious interaction with co-prescribed, conventional medicines. The increased use of self-prescribed CAMS by their patients suggests that practitioners and researchers should keep abreast of the current information on these agents. A primary goal of this article was to review the available scientific evidence for the use of herbs or natural substances as a complementary treatment for patients with CKD. A further goal was to report the literature on herbs that have been reported to cause kidney failure.
Resumo:
Cadmium (Cd) is a metal toxin of continuing worldwide concern. Daily intake of Cd, albeit in small quantities, is associated with a number of adverse health effects which are attributable to distinct pathological changes in a variety of tissues and organs. In the present review, we focus on its renal tubular effects in people who have been exposed environmentally to Cd at levels below the provisional tolerable intake level set for the toxin. We highlight the data linking such low-level Cd intake with tubular injury, altered abundance of cytochromes P450 (CYPs) in the kidney and an expression of a hypertensive phenotype. We provide updated knowledge on renal and vascular effects of the eicosanoids 20-hydroxyeicosatetraenoic acid (20-HETE) and eicosatrienoic acids (EETs), which are biologically active metabolites from arachidonate metabolism mediated by certain CYPs in the kidney. We note the ability of Cd to elicit oxidative stress and to alter metal homeostasis notably of zinc which may lead to augmentation of the defense mechanisms involving induction of the antioxidant enzyme heme oxygenase-1 (HO-1) and the metal binding protein metallothionein (MT) in the kidney. We hypothesize that renal Cd accumulation triggers the host responses mediated by HO-I and MT in an attempt to protect the kidney against injurious oxidative stress and to resist a rise in blood pressure levels. This hypothesis predicts that individuals with less active HO-1 (caused by the HO-1 genetic polymorphisms) are more likely to have renal injury and express a hypertensive phenotype following chronic ingestion of low-level Cd, compared with those having more active HO-1. Future analytical and molecular epidemiologic research should pave the way to the utility of induction of heme oxygenases together with dietary antioxidants in reducing the risk of kidney injury and hypertension in susceptible people.
Resumo:
Side population (SP) cells in the adult kidney are proposed to represent a progenitor population. However, the size, origin, phenotype, and potential of the kidney SP has been controversial. In this study, the SP fraction of embryonic and adult kidneys represented 0.1 to 0.2% of the total viable cell population. The immunophenotype and the expression profile of kidney SP cells was distinct from that of bone marrow SP cells, suggesting that they are a resident nonhematopoietic cell population. Affymetrix expression profiling implicated a role for Notch signaling in kidney SP cells and was used to identify markers of kidney SP. Localization by in situ hybridization confirmed a primarily proximal tubule location, supporting the existence of a tubular niche, but also revealed considerable heterogeneity, including the presence of renal macrophages. Adult kidney SP cells demonstrated multilineage differentiation in vitro, whereas microinjection into mouse metanephroi showed that SP cells had a 3.5- to 13-fold greater potential to contribute to developing kidney than non-SP main population cells. However, although reintroduction of SP cells into an Adriamycin-nephropathy model reduced albuminuria:creatinine ratios, this was without significant tubular integration, suggesting a humoral role for SP cells in renal repair. The heterogeneity of the renal SP highlights the need for further fractionation to distinguish the cellular subpopulations that are responsible for the observed multilineage capacity and transdifferentiative and humoral activities.
Resumo:
The transcription factor PAX2 is expressed during normal kidney development and is thought to influence outgrowth and branching of the ureteric bud. Mice with homozygous null Pax2 mutations have developmental defects of the midbrain-hindbrain region, optic nerve, and ear and are anephric. During nephrogenesis, PAX2 is also expressed by mesenchymal cells as they cluster and reorganize to form proximal elements of each nephron, but the function of PAX2 in these cells is unknown. In this study we hypothesized that PAX2 activates expression of WNT4, a secreted glycoprotein known to be critical for successful nephrogenesis. PAX2 protein was identified in distal portions of the S-shaped body, and the protein persists in the emerging proximal tubules of murine fetal kidney. PAX2 activated WNT4 promoter activity 5-fold in co-transfection assays with JTC12 cells derived from the proximal tubule. Inspection of the 5'-flanking sequence of the human WNT4 gene identified three novel PAX2 recognition motifs; each exhibited specific PAX2 protein binding in electromobility shift assays. Two motifs were contained within a completely duplicated 0.66-kb cassette. Transfection of JTC12 cells with a PAX2 expression vector was associated with a 7-fold increase in endogenous WNT4 mRNA. In contrast, Wnt4 mRNA was decreased by 60% in mesenchymal cell condensates of fetal kidney from mice with a heterozygous Pax2 mutation. We speculated that a key function of PAX2 is to activate WNT4 gene expression in metanephric mesenchymal cells as they differentiate to form elements of the renal tubules.
Resumo:
Regenerative medicine is being heralded in a similar way as gene therapy was some 15 yr ago. it is an area of intense excitement and potential, as well as myth and disinformation. However, with the increasing rate of end-stage renal failure and limited alternatives for its treatment, we must begin to investigate seriously potential regenerative approaches for the kidney. This review defines which regenerative options there might be for renal disease, summarizes the progress that has been made to date, and investigates some of the unique obstacles to such treatments that the kidney presents. The options discussed include in situ organ repair via bone marrow recruitment or dedifferentiation; ex vivo stem cell therapies, including both autologous and nonautologous options; and bioengineering approaches for the creation of a replacement organ.
Resumo:
Protein kinase C (PKC) comprises a superfamily of isoenzymes, many of which are activated by cofactors such as diacylglycerol and phosphatidylserine. In order to be capable of activation, PKC must first undergo a series of phosphorylations. In turn, activated PKC phosphorylates a wide variety of intracellular target proteins and has multiple functions in signal transduced cellular regulation. A role for PKC activation had been noted in several renal diseases, but two that have had most investigation are diabetic nephropathy and kidney cancer. In diabetic nephropathy, an elevation in diacylglycerol and/or other cofactor stimulants leads to an increase in activity of certain PKC isoforms, changes that are linked to the development of dysfunctional vasculature. The ability of isoform-specific PKC inhibitors to antagonize diabetes-induced vascular disease is a new avenue for treatment of this disorder. In the development and progressive invasiveness of kidney cancer, increased activity of several specific isoforms of PKC has been noted. It is thought that this may promote the kidney cancer's inherent resistance to apoptosis, in natural regression or after treatments, or it may promote the invasiveness of renal cancers via cellular differentiation pathways. In general, however, a more complete understanding of the functions of individual PKC isoforms in the kidney, and development or recognition of specific inhibitors or promoters of their activation, will be necessary to apply this knowledge for treatment of cellular dysregulation in renal disease.