987 resultados para DISTRIBUTED DELAYS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in this thesis revolves around erasure correction coding, as applied to distributed data storage and real-time streaming communications.

First, we examine the problem of allocating a given storage budget over a set of nodes for maximum reliability. The objective is to find an allocation of the budget that maximizes the probability of successful recovery by a data collector accessing a random subset of the nodes. This optimization problem is challenging in general because of its combinatorial nature, despite its simple formulation. We study several variations of the problem, assuming different allocation models and access models, and determine the optimal allocation and the optimal symmetric allocation (in which all nonempty nodes store the same amount of data) for a variety of cases. Although the optimal allocation can have nonintuitive structure and can be difficult to find in general, our results suggest that, as a simple heuristic, reliable storage can be achieved by spreading the budget maximally over all nodes when the budget is large, and spreading it minimally over a few nodes when it is small. Coding would therefore be beneficial in the former case, while uncoded replication would suffice in the latter case.

Second, we study how distributed storage allocations affect the recovery delay in a mobile setting. Specifically, two recovery delay optimization problems are considered for a network of mobile storage nodes: the maximization of the probability of successful recovery by a given deadline, and the minimization of the expected recovery delay. We show that the first problem is closely related to the earlier allocation problem, and solve the second problem completely for the case of symmetric allocations. It turns out that the optimal allocations for the two problems can be quite different. In a simulation study, we evaluated the performance of a simple data dissemination and storage protocol for mobile delay-tolerant networks, and observed that the choice of allocation can have a significant impact on the recovery delay under a variety of scenarios.

Third, we consider a real-time streaming system where messages created at regular time intervals at a source are encoded for transmission to a receiver over a packet erasure link; the receiver must subsequently decode each message within a given delay from its creation time. For erasure models containing a limited number of erasures per coding window, per sliding window, and containing erasure bursts whose maximum length is sufficiently short or long, we show that a time-invariant intrasession code asymptotically achieves the maximum message size among all codes that allow decoding under all admissible erasure patterns. For the bursty erasure model, we also show that diagonally interleaved codes derived from specific systematic block codes are asymptotically optimal over all codes in certain cases. We also study an i.i.d. erasure model in which each transmitted packet is erased independently with the same probability; the objective is to maximize the decoding probability for a given message size. We derive an upper bound on the decoding probability for any time-invariant code, and show that the gap between this bound and the performance of a family of time-invariant intrasession codes is small when the message size and packet erasure probability are small. In a simulation study, these codes performed well against a family of random time-invariant convolutional codes under a number of scenarios.

Finally, we consider the joint problems of routing and caching for named data networking. We propose a backpressure-based policy that employs virtual interest packets to make routing and caching decisions. In a packet-level simulation, the proposed policy outperformed a basic protocol that combines shortest-path routing with least-recently-used (LRU) cache replacement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis explores the design, construction, and applications of the optoelectronic swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed around a swept-frequency (chirped) semiconductor laser (SCL) to control its instantaneous optical frequency, such that the chirp characteristics are determined solely by a reference electronic oscillator. The resultant system generates precisely controlled optical frequency sweeps. In particular, we focus on linear chirps because of their numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wavelengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion procedure that enables SFL operation at very high chirp rates, up to 10^16 Hz/sec. We describe commercialization efforts and implementation of the predistortion algorithm in a stand-alone embedded environment, undertaken as part of our collaboration with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW) ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL.

We develop the technique of multiple source FMCW (MS-FMCW) reflectometry, in which the frequency sweeps of multiple SFLs are "stitched" together in order to increase the optical bandwidth, and hence improve the axial resolution, of an FMCW ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which enables MS-FMCW ranging without additional signal processing. The culmination of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical bandwidth of 2 THz, and a free-space axial resolution of 75 microns.

We describe our work on the tomographic imaging camera (TomICam), a 3-D imaging system based on FMCW ranging that features non-mechanical acquisition of transverse pixels. Our approach uses a combination of electronically tuned optical sources and low-cost full-field detector arrays, completely eliminating the need for moving parts traditionally employed in 3-D imaging. We describe the basic TomICam principle, and demonstrate single-pixel TomICam ranging in a proof-of-concept experiment. We also discuss the application of compressive sensing (CS) to the TomICam platform, and perform a series of numerical simulations. These simulations show that tenfold compression is feasible in CS TomICam, which effectively improves the volume acquisition speed by a factor ten.

We develop chirped-wave phase-locking techniques, and apply them to coherent beam combining (CBC) of chirped-seed amplifiers (CSAs) in a master oscillator power amplifier configuration. The precise chirp linearity of the optoelectronic SFL enables non-mechanical compensation of optical delays using acousto-optic frequency shifters, and its high chirp rate simultaneously increases the stimulated Brillouin scattering (SBS) threshold of the active fiber. We characterize a 1550 nm chirped-seed amplifier coherent-combining system. We use a chirp rate of 5*10^14 Hz/sec to increase the amplifier SBS threshold threefold, when compared to a single-frequency seed. We demonstrate efficient phase-locking and electronic beam steering of two 3 W erbium-doped fiber amplifier channels, achieving temporal phase noise levels corresponding to interferometric fringe visibilities exceeding 98%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A repeat-until-success (RUS) measurement-based scheme for the implementation of the distributed quantum computation by using single-photon interference at a 50:50 beam splitter is proposed. It is shown that the 50:50 beam splitter can naturally project a suitably encoded matter-photon state to either a desired entangling gate-operated state of the matter qubits or to their initial state when the photon is detected. The recurrence of the initial state permits us to implement the desired entangling gate in a RUS way. To implement a distributed quantum computation we suggest an encoding method by means of the effect of dipole-induced transparency proposed recently [E. Waks and J. Vuckovic, Phys. Rev. Lett. 96, 153601 (2006)]. The effects of the unfavorable factors on our scheme are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current power grid is on the cusp of modernization due to the emergence of distributed generation and controllable loads, as well as renewable energy. On one hand, distributed and renewable generation is volatile and difficult to dispatch. On the other hand, controllable loads provide significant potential for compensating for the uncertainties. In a future grid where there are thousands or millions of controllable loads and a large portion of the generation comes from volatile sources like wind and solar, distributed control that shifts or reduces the power consumption of electric loads in a reliable and economic way would be highly valuable.

Load control needs to be conducted with network awareness. Otherwise, voltage violations and overloading of circuit devices are likely. To model these effects, network power flows and voltages have to be considered explicitly. However, the physical laws that determine power flows and voltages are nonlinear. Furthermore, while distributed generation and controllable loads are mostly located in distribution networks that are multiphase and radial, most of the power flow studies focus on single-phase networks.

This thesis focuses on distributed load control in multiphase radial distribution networks. In particular, we first study distributed load control without considering network constraints, and then consider network-aware distributed load control.

Distributed implementation of load control is the main challenge if network constraints can be ignored. In this case, we first ignore the uncertainties in renewable generation and load arrivals, and propose a distributed load control algorithm, Algorithm 1, that optimally schedules the deferrable loads to shape the net electricity demand. Deferrable loads refer to loads whose total energy consumption is fixed, but energy usage can be shifted over time in response to network conditions. Algorithm 1 is a distributed gradient decent algorithm, and empirically converges to optimal deferrable load schedules within 15 iterations.

We then extend Algorithm 1 to a real-time setup where deferrable loads arrive over time, and only imprecise predictions about future renewable generation and load are available at the time of decision making. The real-time algorithm Algorithm 2 is based on model-predictive control: Algorithm 2 uses updated predictions on renewable generation as the true values, and computes a pseudo load to simulate future deferrable load. The pseudo load consumes 0 power at the current time step, and its total energy consumption equals the expectation of future deferrable load total energy request.

Network constraints, e.g., transformer loading constraints and voltage regulation constraints, bring significant challenge to the load control problem since power flows and voltages are governed by nonlinear physical laws. Remarkably, distribution networks are usually multiphase and radial. Two approaches are explored to overcome this challenge: one based on convex relaxation and the other that seeks a locally optimal load schedule.

To explore the convex relaxation approach, a novel but equivalent power flow model, the branch flow model, is developed, and a semidefinite programming relaxation, called BFM-SDP, is obtained using the branch flow model. BFM-SDP is mathematically equivalent to a standard convex relaxation proposed in the literature, but numerically is much more stable. Empirical studies show that BFM-SDP is numerically exact for the IEEE 13-, 34-, 37-, 123-bus networks and a real-world 2065-bus network, while the standard convex relaxation is numerically exact for only two of these networks.

Theoretical guarantees on the exactness of convex relaxations are provided for two types of networks: single-phase radial alternative-current (AC) networks, and single-phase mesh direct-current (DC) networks. In particular, for single-phase radial AC networks, we prove that a second-order cone program (SOCP) relaxation is exact if voltage upper bounds are not binding; we also modify the optimal load control problem so that its SOCP relaxation is always exact. For single-phase mesh DC networks, we prove that an SOCP relaxation is exact if 1) voltage upper bounds are not binding, or 2) voltage upper bounds are uniform and power injection lower bounds are strictly negative; we also modify the optimal load control problem so that its SOCP relaxation is always exact.

To seek a locally optimal load schedule, a distributed gradient-decent algorithm, Algorithm 9, is proposed. The suboptimality gap of the algorithm is rigorously characterized and close to 0 for practical networks. Furthermore, unlike the convex relaxation approach, Algorithm 9 ensures a feasible solution. The gradients used in Algorithm 9 are estimated based on a linear approximation of the power flow, which is derived with the following assumptions: 1) line losses are negligible; and 2) voltages are reasonably balanced. Both assumptions are satisfied in practical distribution networks. Empirical results show that Algorithm 9 obtains 70+ times speed up over the convex relaxation approach, at the cost of a suboptimality within numerical precision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A white light interferometer is developed to measure the distributed polarization coupling in high-birefringence polarization-maintaining fibers (PMFs). Usually the birefringence dispersion between two orthogonal eigenmodes of PMFs is neglected in such systems. Theoretical analysis and experimental results show that the birefringence dispersion becomes a nonnegligible factor in a long-fiber test. Significant broadening of interferograms and loss of longitudinal coherence are observed. The spatial resolution and measurement sensitivity of the system decrease correspondingly. Optimum spectrum width selection is presented for better spatial resolution and measurement range. c 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-performance InGaAs/InGaAlAs multiple-quantum-well vertical-cavity surface-emitting lasers (VCSELs) with lnGaAlAs/InP distributed Bragg reflectors are proposed for operation at the wavelength of 1.55 mum. The lasers have good heat diffusion characteristic, large index contrast in DBRs, and weak temperature sensitivity. They could be fabricated either by metal-organic chemical vapor deposition (MOCVD) or by molecular beam epitaxy (MBE) growth. The laser light-current characteristics indicate that a suitable reflectivity of the DBR on the light output side in a laser makes its output power increase greatly and its lasing threshold current reduce significantly, and that a small VCSEL could output the power around its maximum for the output mirror at the reflectivity varying in a broader range than a large VCSEL does. (C) 2004 Elsevier Ltd. All rights reserved.