972 resultados para DISLOCATION DENSITY
Resumo:
A methodology termed the “filtered density function” (FDF) is developed and implemented for large eddy simulation (LES) of chemically reacting turbulent flows. In this methodology, the effects of the unresolved scalar fluctuations are taken into account by considering the probability density function (PDF) of subgrid scale (SGS) scalar quantities. A transport equation is derived for the FDF in which the effect of chemical reactions appears in a closed form. The influences of scalar mixing and convection within the subgrid are modeled. The FDF transport equation is solved numerically via a Lagrangian Monte Carlo scheme in which the solutions of the equivalent stochastic differential equations (SDEs) are obtained. These solutions preserve the Itô-Gikhman nature of the SDEs. The consistency of the FDF approach, the convergence of its Monte Carlo solution and the performance of the closures employed in the FDF transport equation are assessed by comparisons with results obtained by direct numerical simulation (DNS) and by conventional LES procedures in which the first two SGS scalar moments are obtained by a finite difference method (LES-FD). These comparative assessments are conducted by implementations of all three schemes (FDF, DNS and LES-FD) in a temporally developing mixing layer and a spatially developing planar jet under both non-reacting and reacting conditions. In non-reacting flows, the Monte Carlo solution of the FDF yields results similar to those via LES-FD. The advantage of the FDF is demonstrated by its use in reacting flows. In the absence of a closure for the SGS scalar fluctuations, the LES-FD results are significantly different from those based on DNS. The FDF results show a much closer agreement with filtered DNS results. © 1998 American Institute of Physics.
Resumo:
Arrays of aligned carbon nanotubes (CNTs) have been proposed for different applications, including electrochemical energy storage and shock-absorbing materials. Understanding their mechanical response, in relation to their structural characteristics, is important for tailoring the synthesis method to the different operational conditions of the material. In this paper, we grow vertically aligned CNT arrays using a thermal chemical vapor deposition system, and we study the effects of precursor flow on the structural and mechanical properties of the CNT arrays. We show that the CNT growth process is inhomogeneous along the direction of the precursor flow, resulting in varying bulk density at different points on the growth substrate. We also study the effects of non-covalent functionalization of the CNTs after growth, using surfactant and nanoparticles, to vary the effective bulk density and structural arrangement of the arrays. We find that the stiffness and peak stress of the materials increase approximately linearly with increasing bulk density.
Resumo:
The statistically steady humidity distribution resulting from an interaction of advection, modelled as an uncorrelated random walk of moist parcels on an isentropic surface, and a vapour sink, modelled as immediate condensation whenever the specific humidity exceeds a specified saturation humidity, is explored with theory and simulation. A source supplies moisture at the deep-tropical southern boundary of the domain and the saturation humidity is specified as a monotonically decreasing function of distance from the boundary. The boundary source balances the interior condensation sink, so that a stationary spatially inhomogeneous humidity distribution emerges. An exact solution of the Fokker-Planck equation delivers a simple expression for the resulting probability density function (PDF) of the wate-rvapour field and also the relative humidity. This solution agrees completely with a numerical simulation of the process, and the humidity PDF exhibits several features of interest, such as bimodality close to the source and unimodality further from the source. The PDFs of specific and relative humidity are broad and non-Gaussian. The domain-averaged relative humidity PDF is bimodal with distinct moist and dry peaks, a feature which we show agrees with middleworld isentropic PDFs derived from the ERA interim dataset. Copyright (C) 2011 Royal Meteorological Society
Resumo:
The Packaging Research Center has been developing next generation system-on-a-package (SOP) technology with digital, RF, optical, and sensor functions integrated in a single package/module. The goal of this effort is to develop a platform substrate technology providing very high wiring density and embedded thin film passive and active components using PWB compatible materials and processes. The latest SOP baseline process test vehicle has been fabricated on novel Si-matched CTE, high modulus C-SiC composite core substrates using 10mum thick BCB dielectric films with loss tangent of 0.0008 and dielectric constant of 2.65. A semi-additive plating process has been developed for multilayer microvia build-up using BCB without the use of any vacuum deposition or polishing/CMP processes. PWB and package substrate compatible processes such as plasma surface treatment/desmear and electroless/electrolytic pulse reverse plating was used. The smallest line width and space demonstrated in this paper is 6mum with microvia diameters in the 15-30mum range. This build-up process has also been developed on medium CTE organic laminates including MCL-E-679F from Hitachi Chemical and PTFE laminates with Cu-Invar-Cu core. Embedded decoupling capacitors with capacitance density of >500nF/cm2 have been integrated into the build-up layers using sol-gel synthesized BaTiO3 thin films (200-300nm film thickness) deposited on copper foils and integrated using vacuum lamination and subtractive etch processes. Thin metal alloy resistor films have been integrated into the SOP substrate using two methods: (a) NiCrAlSi thin films (25ohms per square) deposited on copper foils (Gould Electronics) laminated on the build-up layers and two step etch process for resistor definition, and (b) electroless plated Ni-W-P thin films (70 ohms to few Kohms per square) on the BCB dielectric by plasma surface treatment and activation. The electrical design and build-up layer structure along- - with key materials and processes used in the fabrication of the SOP4 test vehicle were presented in this paper. Initial results from the high density wiring and embedded thin film components were also presented. The focus of this paper is on integration of materials, processes and structures in a single package substrate for system-on-a-package (SOP) implementation
Resumo:
Structural and charge density distribution studies have been carried out on a single crystal data of an ammonium borate, [C(10)H(26)N(4)][B(5)O(6)(OH)(4)](2), synthesized by solvothermal method. Further, the experimentally observed geometry is used for the theoretical charge density calculations using the B3LYP/6-31G** level of theory, and the results are compared with the experimental values. Topological analysis of charge density based on the Atoms in Molecules approach for B-O bonds exhibit mixed covalent/ionic character. Detailed analysis of the hydrogen bonds in the crystal structure in the ammonium borate provides insights into the understanding of the reaction pathways that net atomic charges and electrostatic potential isosurfaces also give additional such systems. could result in the formation of borate minerals. The input to evaluate chemical and physical properties in such systems.
Resumo:
An extension of the supramolecular synthon-based fragment approach (SBFA) method for transferability of multipole charge density parameters to include weak supramolecular synthons is proposed. In particular, the SBFA method is applied to C-H center dot center dot center dot O, C-H center dot center dot center dot F, and F center dot center dot center dot F containing synthons. A high resolution charge density study has been performed on 4-fluorobenzoic acid to build a synthon library for C-H center dot center dot center dot F infinite chain interactions. Libraries for C-H center dot center dot center dot O and F center dot center dot center dot F synthons were taken from earlier work. The SBFA methodology was applied successfully to 2- and 3-fluorobenzoic acids, data sets for which were collected in a routine manner at 100 K, and the modularity of the synthons was demonstrated. Cocrystals of isonicotinamide with all three fluorobenzoic acids were also studied with the SBFA method. The topological analysis of inter- and intramolecular interaction regions was performed using Bader's AIM approach. This study shows that the SBFA method is generally applicable to generate charge density maps using information from multiple intermolecular regions.
Resumo:
In terabit-density magnetic recording, several bits of data can be replaced by the values of their neighbors in the storage medium. As a result, errors in the medium are dependent on each other and also on the data written. We consider a simple 1-D combinatorial model of this medium. In our model, we assume a setting where binary data is sequentially written on the medium and a bit can erroneously change to the immediately preceding value. We derive several properties of codes that correct this type of errors, focusing on bounds on their cardinality. We also define a probabilistic finite-state channel model of the storage medium, and derive lower and upper estimates of its capacity. A lower bound is derived by evaluating the symmetric capacity of the channel, i.e., the maximum transmission rate under the assumption of the uniform input distribution of the channel. An upper bound is found by showing that the original channel is a stochastic degradation of another, related channel model whose capacity we can compute explicitly.
Resumo:
In this paper, we explore the use of LDPC codes for nonuniform sources under distributed source coding paradigm. Our analysis reveals that several capacity approaching LDPC codes indeed do approach the Slepian-Wolf bound for nonuniform sources as well. The Monte Carlo simulation results show that highly biased sources can be compressed to 0.049 bits/sample away from Slepian-Wolf bound for moderate block lengths.
Resumo:
The temperature ranges of thermal and athermal deformation behaviour of nickel are identified by employing the temperature-dependence of flow-stress and strain-rate cycling data. The results are used to present a unified view of dislocation mechanisms of glide encompassing the two thermally activated and the intermediate athermal regimes of plastic flow.In the low-temperature thermally activated region (<250 K) the strain rate is found to be controlled by the repulsive intersection of glide and forest dislocations, in accordance with current ideas. The athermal stress in this region can be attributed mainly to the presence of strong attractive junctions which are overcome by means of Orowan bowing, a small contribution also coming from the elastic interactions between dislocations. The values of activation area and activation energy obtained in the high-temperature region (> 750 K) negate the operation of a diffusion-controlled mechanism. Instead, the data support a thermal activation model involving unzipping of the attractive junctions. The internal (long-range) stress contribution here results solely from the elastic interactions between dislocations. This view concerning the high-temperature plastic flow is further supported by the observation that the Cottrell–Stokes law is obeyed over large strains in the range 750–1200 K.
Resumo:
We investigate the effect of static electron-phonon coupling on real-time dynamics of spin and charge transport in pi-conjugated polyene chains. The polyene chain is modeled by the Pariser-Parr-Pople Hamiltonian with dimerized nearest-neighbor parameter t(0)(1 + delta) for short bonds and t(0)(1 - delta) for long bonds, and long-range electron-electron interactions. We follow the time evolution of the spin and charge using time-dependent density matrix renormalization group technique when a hole is injected at one end of the chain in its ground state. We find that spin and charge dynamics followed through spin and charge velocities depend both on chain length and extent of dimerization delta. Analysis of the results requires focusing on physical quantities such as average spin and charge polarizations, particularly in the large dimerization limit. In the dimerization range 0.0 <= delta <= 0.15, spin-charge dynamics is found to have a well-defined behavior, with spin-charge separation (measured as the ratio of charge velocity to spin velocity) as well as the total amount of charge and spin transported in a given time along the chain decreasing as dimerization increases. However, in the range 0.3 <= delta <= 0.5, it is observed that the dynamics of spin and charge transport becomes complicated. It is observed that, for large delta values, spin-charge separation is suppressed and the injected hole fails to travel the entire length of the chain.
Resumo:
Amorphous silicon carbide (a-Si(1-x)C(x)) films were deposited on silicon (100) and quartz substrates by pulsed DC reactive magnetron sputtering of silicon in methane (CH(4))-Argon (Ar) atmosphere. The influence of substrate temperature and target power on the composition, carbon bonding configuration, band gap, refractive index and hardness of a-SiC films has been investigated. Increase in substrate temperature results in slightly decreasing the carbon concentration in the films but favors silicon-carbon (Si-C) bonding. Also lower target powers were favorable towards Si-C bonding. X-ray photoelectron spectroscopy (XPS) results agree with the Fourier Transform Infrared (FTIR), UV-vis spectroscopy results. Increase in substrate temperature resulted in increased hardness of the thin films from 13 to 17 GPa and the corresponding bandgap varied from 2.1 to 1.8 eV. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The symmetrized density matrix renormalization group method is used to study linear and nonlinear optical properties of free base porphine and metalloporphine. Long-range interacting model, namely, Pariser-Parr-Pople model is employed to capture the quantum many-body effect in these systems. The nonlinear optical coefficients are computed within the correction vector method. The computed singlet and triplet low-lying excited state energies and their charge densities are in excellent agreement with experimental as well as many other theoretical results. The rearrangement of the charge density at carbon and nitrogen sites, on excitation, is discussed. From our bond order calculation, we conclude that porphine is well described by the 18-annulenic structure in the ground state and the molecule expands upon excitation. We have modeled the regular metalloporphine by taking an effective electric field due to the metal ion and computed the excitation spectrum. Metalloporphines have D(4h) symmetry and hence have more degenerate excited states. The ground state of metalloporphines shows 20-annulenic structure, as the charge on the metal ion increases. The linear polarizability seems to increase with the charge initially and then saturates. The same trend is observed in third order polarizability coefficients. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3671946]
Resumo:
In this article, we report the mechanical and biocompatibility properties of injection-molded high-density polyethylene (HDPE) composites reinforced with 40 wt % ceramic filler [hydroxyapatite (HA) and/or Al2O3] and 2 wt % titanate as a coupling agent. The mechanical property measurements revealed that a combination of a maximum tensile strength of 18.7 MPa and a maximum tensile modulus of about 855 MPa could be achieved with the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites. For the same composite composition, the maximum compression strength was determined to be 71.6 MPa and the compression modulus was about 660 MPa. The fractrography study revealed the uniform distribution of ceramic fillers in the semicrystalline HDPE matrix. The cytocompatibility study with osteoblast-like SaOS2 cells confirmed extensive cell adhesion and proliferation on the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites. The cell viability analysis with the 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed a statistically significant difference between the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites and sintered HA for various culture durations of upto 7 days. The difference in cytocompatibility properties among the biocomposites is explained in terms of the difference in the protein absorption behavior. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
In this paper we investigate the effect of terminal substituents on the dynamics of spin and charge transport in donor-acceptor substituted polyenes [D-(CH)(x)-A] chains, also known as push-pull polyenes. We employ a long-range correlated model Hamiltonian for the D-(CH)(x)-A system, and time-dependent density matrix renormalization group technique for time propagating the wave packet obtained by injecting a hole at a terminal site, in the ground state of the system. Our studies reveal that the end groups do not affect spin and charge velocities in any significant way, but change the amount of charge transported. We have compared these push-pull systems with donor-acceptor substituted polymethine imine (PMI), D-(CHN)(x)-A, systems in which besides electron affinities, the nature of p(z) orbitals in conjugation also alternate from site to site. We note that spin and charge dynamics in the PMIs are very different from that observed in the case of push-pull polyenes, and within the time scale of our studies, transport of spin and charge leads to the formation of a ``quasi-static'' state.