975 resultados para DEPENDENT QUANTUM PROBLEMS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Passive states of quantum systems are states from which no system energy can be extracted by any cyclic (unitary) process. Gibbs states of all temperatures are passive. Strong local (SL) passive states are defined to allow any general quantum operation, but the operation is required to be local, being applied only to a specific subsystem. Any mixture of eigenstates in a system-dependent neighborhood of a nondegenerate entangled ground state is found to be SL passive. In particular, Gibbs states are SL passive with respect to a subsystem only at or below a critical system-dependent temperature. SL passivity is associated in many-body systems with the presence of ground state entanglement in a way suggestive of collective quantum phenomena such as quantum phase transitions, superconductivity, and the quantum Hall effect. The presence of SL passivity is detailed for some simple spin systems where it is found that SL passivity is neither confined to systems of only a few particles nor limited to the near vicinity of the ground state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Psychogenetic research has emphasised the influence of social factors on a child's intellectual development. In her work, Ms. Dumitrascu examines two such factors; family size and order of birth. However, since these formal parameters tend to be unstable, other more informal factors should be taken into consideration. Of these, perhaps the most interesting is the "style" of parental education, which Ms. Dumitrascu regards as an expression of national traditions at the family level. This educational style is culture dependent. Only a comparative, cross-cultural study can reveal the real mechanism through which educational style influences the development of a child's intellect and personality. Ms. Dumitrascu conducted an experimental cross-cultural study aimed at examining the effects of the family environment on a child's intellectual development. Three distinct populations were involved in her investigation, each having quite a distinct status in their geographical area; Romanians, Romanies (Gypsies) from Romania, and Russians from the Republic of Moldova. She presented her research in the form of a series of articles written in English totalling 85 pages, and also on disc. A significant difference was revealed between the intelligence of a child living in a large family, and that of a child with no brothers or sisters. In the case of Romany children, the gap is remarkably large. Ms. Dumitrascu concludes that the simultaneous action of several negative factors (low socio-economic status, large family size, socio-cultural isolation of a population) may delay child development. Subjected to such a precarious environment, Romany children do not seek self-realisation, but rather struggle to survive the hardship. Most of them remain out of civilisation. Unfortunately, adult Romanies seldom express any concern regarding their children's successful social integration. The school as main socialisation tool has no value for most parents. Ms. Dumitrascu argues the need for a major effort aimed at helping Romany's social integration. She hopes this project will be of some help for psychologists, social workers, teachers, and all those who are interested in the integration into society of minority groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of novel nanomaterials with highly-functional biological molecules has advanced multiple fields including electronics, sensing, imaging, and energy harvesting. This work focuses on the creation of a new type of bio-nano hybrid substrate for military biosensing applications. Specifically it is shown that the nano-scale interactions of the optical protein bacteriorhodopsin and colloidal semiconductor quantum dots can be utilized as a generic sensing substrate. This work spans from the basic creation of the protein to its application in a novel biosensing system. The functionality of this sensor design originates from the unique interactions between the quantum dot and bacteriorhodopsin molecule when in nanoscale proximity. A direct energy transfer relationship has been established between coreshell quantum dots and the optical protein bacteriorhodopsin that substantially enhances the protein’s native photovoltaic capabilities. This energy transfer phenomena is largely distance dependent, in the sub-10nm realm, and is characterized experimentally at multiple separation distances. Experimental results on the energy transfer efficiency in this hybrid system correlate closely to theoretical predictions. Deposition of the hybrid system with nano-scale control has allowed for the utilization of this energy transfer phenomena as a modulation point for a functional biosensor prototype. This work reveals that quantum dots have the ability to activate the bacteriorhodopsin photocycle through both photonic and non-photonic energy transfer mechanisms. By altering the energy transferred to the bacteriorhodopsin molecule from the quantum dot, the electrical output of the protein can be modulated. A biosensing prototype was created in which the energy transfer relationship is altered upon target binding, demonstrating the applicability of a quantum dot/bacteriorhodopsin hybrid system for sensor applications. The electrical nature of this sensing substrate will allow for its efficient integration into a nanoelectronics array form, potentially leading to a small-low power sensing platform for remote toxin detection applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study reports for the first time the optimization of the infrared (1523 nm) to near-infrared (980 nm) upconversion quantum yield (UC-QY) of hexagonal trivalent erbium doped sodium yttrium fluoride (β-NaYF4:Er3+) in a perfluorocyclobutane (PFCB) host matrix under monochromatic excitation. Maximum internal and external UC-QYs of 8.4% ± 0.8% and 6.5% ± 0.7%, respectively, have been achieved for 1523 nm excitation of 970 ± 43 Wm−2 for an optimum Er3+ concentration of 25 mol% and a phosphor concentration of 84.9 w/w% in the matrix. These results correspond to normalized internal and external efficiencies of 0.86 ± 0.12 cm2 W−1 and 0.67 ± 0.10 cm2 W−1, respectively. These are the highest values ever reported for β-NaYF4:Er3+ under monochromatic excitation. The special characteristics of both the UC phosphor β-NaYF4:Er3+ and the PFCB matrix give rise to this outstanding property. Detailed power and time dependent luminescence measurements reveal energy transfer upconversion as the dominant UC mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND & AIMS Development of strictures is a major concern for patients with eosinophilic esophagitis (EoE). At diagnosis, EoE can present with an inflammatory phenotype (characterized by whitish exudates, furrows, and edema), a stricturing phenotype (characterized by rings and stenosis), or a combination of these. Little is known about progression of stricture formation; we evaluated stricture development over time in the absence of treatment and investigated risk factors for stricture formation. METHODS We performed a retrospective study using the Swiss EoE Database, collecting data on 200 patients with symptomatic EoE (153 men; mean age at diagnosis, 39 ± 15 years old). Stricture severity was graded based on the degree of difficulty associated with passing of the standard adult endoscope. RESULTS The median delay in diagnosis of EoE was 6 years (interquartile range, 2-12 years). With increasing duration of delay in diagnosis, the prevalence of fibrotic features of EoE, based on endoscopy, increased from 46.5% (diagnostic delay, 0-2 years) to 87.5% (diagnostic delay, >20 years; P = .020). Similarly, the prevalence of esophageal strictures increased with duration of diagnostic delay, from 17.2% (diagnostic delay, 0-2 years) to 70.8% (diagnostic delay, >20 years; P < .001). Diagnostic delay was the only risk factor for strictures at the time of EoE diagnosis (odds ratio = 1.08; 95% confidence interval: 1.040-1.122; P < .001). CONCLUSIONS The prevalence of esophageal strictures correlates with the duration of untreated disease. These findings indicate the need to minimize delay in diagnosis of EoE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using ultracold alkaline-earth atoms in optical lattices, we construct a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at nonzero temperature or baryon density. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can address the corresponding chiral dynamics in real time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abelian and non-Abelian gauge theories are of central importance in many areas of physics. In condensed matter physics, AbelianU(1) lattice gauge theories arise in the description of certain quantum spin liquids. In quantum information theory, Kitaev’s toric code is a Z(2) lattice gauge theory. In particle physics, Quantum Chromodynamics (QCD), the non-Abelian SU(3) gauge theory of the strong interactions between quarks and gluons, is nonperturbatively regularized on a lattice. Quantum link models extend the concept of lattice gauge theories beyond the Wilson formulation, and are well suited for both digital and analog quantum simulation using ultracold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, they open the door to studies of the real-time evolution of strongly coupled quantum systems, which are impossible with classical simulation methods. A plethora of interesting lattice gauge theories suggests itself for quantum simulation, which should allow us to address very challenging problems, ranging from confinement and deconfinement, or chiral symmetry breaking and its restoration at finite baryon density, to color superconductivity and the real-time evolution of heavy-ion collisions, first in simpler model gauge theories and ultimately in QCD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use quantum link models to construct a quantum simulator for U(N) and SU(N) lattice gauge theories. These models replace Wilson’s classical link variables by quantum link operators, reducing the link Hilbert space to a finite number of dimensions. We show how to embody these quantum link models with fermionic matter with ultracold alkaline-earth atoms using optical lattices. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can thus address the corresponding dynamics in real time. Using exact diagonalization results we show that these systems share qualitative features with QCD, including chiral symmetry breaking and we study the expansion of a chirally restored region in space in real time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum link models provide an alternative non-perturbative formulation of Abelian and non-Abelian lattice gauge theories. They are ideally suited for quantum simulation, for example, using ultracold atoms in an optical lattice. This holds the promise to address currently unsolvable problems, such as the real-time and high-density dynamics of strongly interacting matter, first in toy-model gauge theories, and ultimately in QCD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive the fermion loop formulation of N=4 supersymmetric SU(N) Yang-Mills quantum mechanics on the lattice. The loop formulation naturally separates the contributions to the partition function into its bosonic and fermionic parts with fixed fermion number and provides a way to control potential fermion sign problems arising in numerical simulations of the theory. Furthermore, we present a reduced fermion matrix determinant which allows the projection into the canonical sectors of the theory and hence constitutes an alternative approach to simulate the theory on the lattice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acid rock drainage (ARD) is a problem of international relevance with substantial environmental and economic implications. Reactive transport modeling has proven a powerful tool for the process-based assessment of metal release and attenuation at ARD sites. Although a variety of models has been used to investigate ARD, a systematic model intercomparison has not been conducted to date. This contribution presents such a model intercomparison involving three synthetic benchmark problems designed to evaluate model results for the most relevant processes at ARD sites. The first benchmark (ARD-B1) focuses on the oxidation of sulfide minerals in an unsaturated tailing impoundment, affected by the ingress of atmospheric oxygen. ARD-B2 extends the first problem to include pH buffering by primary mineral dissolution and secondary mineral precipitation. The third problem (ARD-B3) in addition considers the kinetic and pH-dependent dissolution of silicate minerals under low pH conditions. The set of benchmarks was solved by four reactive transport codes, namely CrunchFlow, Flotran, HP1, and MIN3P. The results comparison focused on spatial profiles of dissolved concentrations, pH and pE, pore gas composition, and mineral assemblages. In addition, results of transient profiles for selected elements and cumulative mass loadings were considered in the intercomparison. Despite substantial differences in model formulations, very good agreement was obtained between the various codes. Residual deviations between the results are analyzed and discussed in terms of their implications for capturing system evolution and long-term mass loading predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulations of supersymmetric field theories with spontaneously broken supersymmetry require in addition to the ultraviolet regularisation also an infrared one, due to the emergence of the massless Goldstino. The intricate interplay between ultraviolet and infrared effects towards the continuum and infinite volume limit demands careful investigations to avoid potential problems. In this paper – the second in a series of three – we present such an investigation for N=2 supersymmetric quantum mechanics formulated on the lattice in terms of bosonic and fermionic bonds. In one dimension, the bond formulation allows to solve the system exactly, even at finite lattice spacing, through the construction and analysis of transfer matrices. In the present paper we elaborate on this approach and discuss a range of exact results for observables such as the Witten index, the mass spectra and Ward identities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the transition from unitary to dissipative dynamics in the relativistic O(N) vector model with the λ(φ2)2 interaction using the nonperturbative functional renormalization group in the real-time formalism. In thermal equilibrium, the theory is characterized by two scales, the interaction range for coherent scattering of particles and the mean free path determined by the rate of incoherent collisions with excitations in the thermal medium. Their competition determines the renormalization group flow and the effective dynamics of the model. Here we quantify the dynamic properties of the model in terms of the scale-dependent dynamic critical exponent z in the limit of large temperatures and in 2≤d≤4 spatial dimensions. We contrast our results to the behavior expected at vanishing temperature and address the question of the appropriate dynamic universality class for the given microscopic theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose To determine renal oxygenation changes associated with uninephrectomy and transplantation in both native donor kidneys and transplanted kidneys by using blood oxygenation level-dependent (BOLD) MR imaging. Materials and Methods The study protocol was approved by the local ethics committee. Thirteen healthy kidney donors and their corresponding recipients underwent kidney BOLD MR imaging with a 3-T imager. Written informed consent was obtained from each subject. BOLD MR imaging was performed in donors before uninephrectomy and in donors and recipients 8 days, 3 months, and 12 months after transplantation. R2* values, which are inversely related to tissue partial pressure of oxygen, were determined in the cortex and medulla. Longitudinal R2* changes were statistically analyzed by using repeated measures one-way analysis of variance with post hoc pair-wise comparisons. Results R2* values in the remaining kidneys significantly decreased early after uninephrectomy in both the medulla and cortex (P < .003), from 28.9 sec(-1) ± 2.3 to 26.4 sec(-1) ± 2.5 in the medulla and from 18.3 sec(-1) ± 1.5 to 16.3 sec(-1) ± 1.0 in the cortex, indicating increased oxygen content. In donors, R2* remained significantly decreased in both the medulla and cortex at 3 (P < .01) and 12 (P < .01) months. In transplanted kidneys, R2* remained stable during the first year after transplantation, with no significant change. Among donors, cortical R2* was found to be negatively correlated with estimated glomerular filtration rate (R = -0.47, P < .001). Conclusion The results suggest that BOLD MR imaging may potentially be used to monitor renal functional changes in both remaining and corresponding transplanted kidneys. (©) RSNA, 2016.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper explains in what sense the GRW matter density theory (GRWm) is a primitive ontology theory of quantum mechanics and why, thus conceived, the standard objections against the GRW formalism do not apply to GRWm. We consider the different options for conceiving the quantum state in GRWm and argue that dispositionalism is the most attractive one.