955 resultados para DCDC 5 gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Degradation of unsaturated fatty acids through the peroxisomal beta-oxidation pathway requires the participation of auxiliary enzymes in addition to the enzymes of the core beta-oxidation cycle. The auxiliary enzyme delta(3,5),delta(2,4)-dienoyl-coenzyme A (CoA) isomerase has been well studied in yeast (Saccharomyces cerevisiae) and mammals, but no plant homolog had been identified and characterized at the biochemical or molecular level. A candidate gene (At5g43280) was identified in Arabidopsis (Arabidopsis thaliana) encoding a protein showing homology to the rat (Rattus norvegicus) delta(3,5),delta(2,4)-dienoyl-CoA isomerase, and possessing an enoyl-CoA hydratase/isomerase fingerprint as well as aspartic and glutamic residues shown to be important for catalytic activity of the mammalian enzyme. The protein, named AtDCI1, contains a peroxisome targeting sequence at the C terminus, and fusion of a fluorescent protein to AtDCI1 directed the chimeric protein to the peroxisome in onion (Allium cepa) cells. AtDCI1 expressed in Escherichia coli was shown to have delta(3,5),delta(2,4)-dienoyl-CoA isomerase activity in vitro. Furthermore, using the synthesis of polyhydroxyalkanoate in yeast peroxisomes as an analytical tool to study the beta-oxidation cycle, expression of AtDCI1 was shown to complement the yeast mutant deficient in the delta(3,5),delta(2,4)-dienoyl-CoA isomerase, thus showing that AtDCI1 is also appropriately targeted to the peroxisome in yeast and has delta(3,5),delta(2,4)-dienoyl-CoA isomerase activity in vivo. The AtDCI1 gene is expressed constitutively in several tissues, but expression is particularly induced during seed germination. Proteins showing high homology with AtDCI1 are found in gymnosperms as well as angiosperms belonging to the Monocotyledon or Dicotyledon classes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The malic enzyme (ME) gene is a target for both thyroid hormone receptors and peroxisome proliferator-activated receptors (PPAR). Within the ME promoter, two direct repeat (DR)-1-like elements, MEp and MEd, have been identified as putative PPAR response elements (PPRE). We demonstrate that only MEp and not MEd is able to bind PPAR/retinoid X receptor (RXR) heterodimers and mediate peroxisome proliferator signaling. Taking advantage of the close sequence resemblance of MEp and MEd, we have identified crucial determinants of a PPRE. Using reciprocal mutation analyses of these two elements, we show the preference for adenine as the spacing nucleotide between the two half-sites of the PPRE and demonstrate the importance of the two first bases flanking the core DR1 in 5'. This latter feature of the PPRE lead us to consider the polarity of the PPAR/RXR heterodimer bound to its cognate element. We demonstrate that, in contrast to the polarity of RXR/TR and RXR/RAR bound to DR4 and DR5 elements respectively, PPAR binds to the 5' extended half-site of the response element, while RXR occupies the 3' half-site. Consistent with this polarity is our finding that formation and binding of the PPAR/RXR heterodimer requires an intact hinge T region in RXR while its integrity is not required for binding of the RXR/TR heterodimer to a DR4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Plasma adiponectin is strongly associated with various components of metabolic syndrome, type 2 diabetes and cardiovascular outcomes. Concentrations are highly heritable and differ between men and women. We therefore aimed to investigate the genetics of plasma adiponectin in men and women. METHODS: We combined genome-wide association scans of three population-based studies including 4659 persons. For the replication stage in 13795 subjects, we selected the 20 top signals of the combined analysis, as well as the 10 top signals with p-values less than 1.0 x 10(-4) for each the men- and the women-specific analyses. We further selected 73 SNPs that were consistently associated with metabolic syndrome parameters in previous genome-wide association studies to check for their association with plasma adiponectin. RESULTS: The ADIPOQ locus showed genome-wide significant p-values in the combined (p=4.3 x 10(-24)) as well as in both women- and men-specific analyses (p=8.7 x 10(-17) and p=2.5 x 10(-11), respectively). None of the other 39 top signal SNPs showed evidence for association in the replication analysis. None of 73 SNPs from metabolic syndrome loci exhibited association with plasma adiponectin (p>0.01). CONCLUSIONS: We demonstrated the ADIPOQ gene as the only major gene for plasma adiponectin, which explains 6.7% of the phenotypic variance. We further found that neither this gene nor any of the metabolic syndrome loci explained the sex differences observed for plasma adiponectin. Larger studies are needed to identify more moderate genetic determinants of plasma adiponectin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract : Gene duplication is an essential source of material for the origin of genetic novelties. The reverse transcription of source gene mRNA followed by the genomic insertion of the resulting cDNA - retroposition - has provided the human genome with at least ~3600 detectable retrocopies. We find that ~30% of these retrocopies are transcribed, generally in testes. Their transcription often relies on preexisting regulatory elements (or open chromatin) close to their insertion site, which is illustrated by mRNA molecules containing retrocopies fused to their neighboring genes. Retrocopies appear to have been profoundly shaped by selection. Consistently, human retrocopies with an intact open reading (ORF) are more often transcribed than retropseudogenes, which leads to a minimal estimate of 120 functional retrogenes present in our genome. We also performed an analysis of Ka/Ks for human retrocopies. This analysis demonstrates that several intact retrocopies evolved under purifying selection and yields an estimated formation rate of ~1 retrogene per million year in the primate lineage. Using DNA sequencing and evolutionary simulations, we have identified 7 such primate-specific retrogenes that emerged on the lineage leading to humans In therian genomes, we found an excess of retrogenes with X-linked parents. Expression analyses support the idea that this "out of X" movement was driven by natural selection to produce autosomal functional counterparts for X-linked genes, which are silenced during male meiosis. Phylogenetic dating of this "out of X" movement suggests that our sex chromosomes arose about 180 MYA ago and are thus much younger than previously thought. Finally, we have also analyzed young gene duplications (and deletions) that arose by non allelic-homologous recombination and are not fixed in species. Using wild-caught and laboratory animals, we detected thousands of DNA segments that are polymorphic in copy number in mice. These copy number variants were found to profoundly alter the transcriptome of several mouse tissues. Strikingly, their influence on gene expression is not limited to the gene they contain but seems to extend to genes located up to 1.5 million bases away.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using an extract of nuclei from the estrogen-responsive human breast cancer cell line MCF-7, protein-DNA complexes were assembled in vitro at the 5' end of the Xenopus laevis vitellogenin gene B2 that is normally expressed in liver after estrogen induction. The complexes formed were analyzed by electron microscopy after labeling by the indirect colloidal gold immunological method using a monoclonal antibody specific for the human estrogen receptor. As identified by its interaction with protein A-gold, the antibody was found linked to two protein-DNA complexes, the first localized at the estrogen responsive element of the gene and the second in intron I, thus proving a direct participation of the receptor in these two complexes. The procedure used allows the visualization and rapid localization of specific transcription factors bound in vitro to a promoter or any other gene region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biocontrol activity of the root-colonizing Pseudomonas fluorescens strain CHA0 is largely determined by the production of antifungal metabolites, especially 2,4-diacetylphloroglucinol. The expression of these metabolites depends on abiotic and biotic environmental factors, in particular, elements present in the rhizosphere. In this study, we have developed a new method for the in situ analysis of antifungal gene expression using flow cytometry combined with green fluorescent protein (GFP)-based reporter fusions to the phlA and prnA genes essential for the production of the antifungal compounds 2,4-diacetylphloroglucinol and pyrrolnitrin, respectively, in strain CHA0. Expression of phlA-gfp and prnA-gfp in CHA0 cells harvested from the rhizosphere of a set of plant species as well as from the roots of healthy, leaf pathogen-attacked, and physically stressed plants were analyzed using a FACSCalibur. After subtraction of background fluorescence emitted by plant-derived particles and CHA0 cells not carrying the gfp reporters, the average gene expression per bacterial cell could be calculated. Levels of phlA and prnA expression varied significantly in the rhizospheres of different plant species. Physical stress and leaf pathogen infection lowered phlA expression levels in the rhizosphere of cucumber. Our results demonstrate that the newly developed approach is suitable to monitor differences in levels of antifungal gene expression in response to various plant-derived factors. An advantage of the method is that it allows quantification of bacterial gene expression in rhizosphere populations at a single-cell level. To our best knowledge, this is the first study using flow cytometry for the in situ analysis of biocontrol gene expression in a plant-beneficial bacterium in the rhizosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE. Knowledge of genetic factors predisposing to age-related cataract is very limited. The aim of this study was to identify DNA sequences that either lead to or predispose for this disease. METHODS. The candidate gene SLC16A12, which encodes a solute carrier of the monocarboxylate transporter family, was sequenced in 484 patients with cataract (134 with juvenile cataract, 350 with age-related cataract) and 190 control subjects. Expression studies included luciferase reporter assay and RT-PCR experiments. RESULTS. One patient with age-related cataract showed a novel heterozygous mutation (c.-17A>G) in the 5'untranslated region (5'UTR). This mutation is in cis with the minor G-allele of the single nucleotide polymorphism (SNP) rs3740030 (c.-42T/G), also within the 5'UTR. Using a luciferase reporter assay system, a construct with the patient's haplotype caused a significant upregulation of luciferase activity. In comparison, the SNP G-allele alone promoted less activity, but that amount was still significantly higher than the amount of the common T-allele. Analysis of SLC16A12 transcripts in surrogate tissue demonstrated striking allele-specific differences causing 5'UTR heterogeneity with respect to sequence and quantity. These differences in gene expression were mirrored in an allele-specific predisposition to age-related cataract, as determined in a Swiss population (odds ratio approximately 2.2; confidence intervals, 1.23-4.3). CONCLUSIONS. The monocarboxylate transporter SLC16A12 may contribute to age-related cataract. Sequences within the 5'UTR modulate translational efficiency with pathogenic consequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fetal rat telencephalon organotypic cell culture system was found to reproduce the developmental pattern of Na-K-adenosinetriphosphatase (ATPase) gene expression observed in vivo [Am. J. Physiol. 258 (Cell Physiol. 27): C1062-C1069, 1990]. We have used this culture system to study the effects of triiodothyronine (T3; 0.003-30 nM) on mRNA abundance and basal transcription rates of Na-K-ATPase isoforms. Steady-state mRNA levels were low at culture day 6 (corresponding to the day of birth) but distinct for each isoform alpha 3 much greater than beta 1 = beta 2 greater than alpha 2 greater than alpha 1. At culture day 6, T3 did not modify mRNA abundance of any isoform. At culture day 12 (corresponding to day 7 postnatal), T3 increased the mRNA level of alpha 2 (4- to 7-fold), beta 2 (4- to 5-fold), alpha 1 (3- to 6-fold), and beta 1 (1.5-fold), whereas alpha 3 mRNA levels remained unchanged. Interestingly, the basal transcription rate for each isoform differed strikingly (alpha 2 greater than alpha 1 much greater than beta 1 = beta 2 greater than alpha 3) but remained stable throughout 12 days of culture and was not regulated by T3. Thus we observed an inverse relationship between rate of transcription and rate of mRNA accumulation for each alpha-isoform, suggesting that alpha 1- and alpha 2-mRNA are turning over rapidly whereas alpha 3-mRNA is turning over slowly. Our data indicate that one of the mechanisms by which T3 selectively controls Na-K-ATPase gene expression during brain development in vitro occurs at the posttranscriptional level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modified vaccinia virus Ankara (MVA) is an attenuated double-stranded DNA poxvirus currently developed as a vaccine vector against HIV/AIDS. Profiling of the innate immune responses induced by MVA is essential for the design of vaccine vectors and for anticipating potential adverse interactions between naturally acquired and vaccine-induced immune responses. Here we report on innate immune sensing of MVA and cytokine responses in human THP-1 cells, primary human macrophages and mouse bone marrow-derived macrophages (BMDMs). The innate immune responses elicited by MVA in human macrophages were characterized by a robust chemokine production and a fairly weak pro-inflammatory cytokine response. Analyses of the cytokine production profile of macrophages isolated from knockout mice deficient in Toll-like receptors (TLRs) or in the adapter molecules MyD88 and TRIF revealed a critical role for TLR2, TLR6 and MyD88 in the production of IFNbeta-independent chemokines. MVA induced a marked up-regulation of the expression of RIG-I like receptors (RLR) and the IPS-1 adapter (also known as Cardif, MAVS or VISA). Reduced expression of RIG-I, MDA-5 and IPS-1 by shRNAs indicated that sensing of MVA by RLR and production of IFNbeta and IFNbeta-dependent chemokines was controlled by the MDA-5 and IPS-1 pathway in the macrophage. Crosstalk between TLR2-MyD88 and the NALP3 inflammasome was essential for expression and processing of IL-1beta. Transcription of the Il1b gene was markedly impaired in TLR2(-/-) and MyD88(-/-) BMDM, whereas mature and secreted IL-1beta was massively reduced in NALP3(-/-) BMDMs or in human THP-1 macrophages with reduced expression of NALP3, ASC or caspase-1 by shRNAs. Innate immune sensing of MVA and production of chemokines, IFNbeta and IL-1beta by macrophages is mediated by the TLR2-TLR6-MyD88, MDA-5-IPS-1 and NALP3 inflammasome pathways. Delineation of the host response induced by MVA is critical for improving our understanding of poxvirus antiviral escape mechanisms and for designing new MVA vaccine vectors with improved immunogenicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: Activity of rifampicin against Propionibacterium acnes biofilms was recently demonstrated, but rifampicin resistance has not yet been described in this organism. We investigated the in vitro emergence of rifampicin resistance in P. acnes and characterized its molecular background. METHODS: P. acnes ATCC 11827 was used (MIC 0.007 mg/L). The mutation rate was determined by inoculation of 10(9) cfu of P. acnes on rifampicin-containing agar plates incubated anaerobically for 7 days. Progressive emergence of resistance was studied by serial exposure to increasing concentrations of rifampicin in 72 h cycles using a low (10(6) cfu/mL) and high (10(8) cfu/mL) inoculum. The stability of resistance was determined after three subcultures of rifampicin-resistant isolates on rifampicin-free agar. For resistant mutants, the whole rpoB gene was amplified, sequenced and compared with a P. acnes reference sequence (NC006085). RESULTS: P. acnes growth was observed on rifampicin-containing plates with mutation rates of 2 ± 1 cfu  ×  10(-9) (4096× MIC) and 12 ± 5 cfu  ×  10(-9) (4 × MIC). High-level rifampicin resistance emerged progressively after 4 (high inoculum) and 13 (low inoculum) cycles. In rifampicin-resistant isolates, the MIC remained >32 mg/L after three subcultures. Mutations were detected in clusters I (amino acids 418-444) and II (amino acids 471-486) of the rpoB gene after sequence alignment with a Staphylococcus aureus reference sequence (CAA45512). The five following substitutions were found: His-437 594; Tyr, Ser-442 594; Leu, Leu-444 594; Ser, Ile-483 594; Val and Ser-485 594; Leu. CONCLUSION: The rifampicin MIC increased from highly susceptible to highly resistant values. The resistance remained stable and was associated with mutations in the rpoB gene. To our knowledge, this is the first report of the emergence of rifampicin resistance in P. acnes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The gene Pgm-3 (or a closely linked gene) influences the phenotype and reproductive success of queens in multiple-queen (polygynous) colonies but not single-queen (monogynous) colonies of the Fire Ant Solenopsis invicta. 2. We investigated the mechanisms of differential phenotypic expression of Pgm-3 in these alternate social forms. Mature winged queens with the homozygous genotype Pgm-3(a/a) averaged 26% heavier than queens with the genotypes Pgm-3(a/b) and Pgm 3(b/b) in the polygynous form. Heterozygotes were slightly heavier (2%) than Pgm-3(b/b) queens in this form, demonstrating that the allele Pgm-3(a) is not completely recessive in its effects on weight. 3. There was no significant difference in weight among queens of the three Pgm-3 genotypes in the monogynous form, with the mean weight of monogynous queens slightly greater than that of polygynous Pgm-3(a/a) queens. Differences in weight between queens of the two social forms and among queens of the three genotypes in the polygynous form are not evident at the pupal stage and thus appear to develop during sexual maturation of the adults. This suggests that some component of the social environment of polygynous colonies inhibits weight gains during queen maturation and that Pgm-(3a/a) queens are relatively less sensitive to this factor. 4. To test whether the high cumulative queen pheromone level characteristic of polygynous colonies is the factor responsible for the differential queen maturation, we compared phenotypes of winged queens reared in split colonies in which pheromone levels were manipulated by adjusting queen number. Queens produced in colony fragments made monogynous were heavier than those produced in polygynous fragments, a finding consistent with the hypothesis that pheromone level affects the reproductive development of queens. However, genotype-specific differences in weights of queens were similar between the two treatments, suggesting that pheromone level was not the key factor of the social environment responsible for the gene-environment interaction. 5. To test whether limited food availability to winged queens associated with the high brood/worker ratios in polygynous colonies is the factor responsible for this interaction, similar split-colony experiments were performed. Elevated brood/worker ratios decreased the weight of winged queens but there was no evidence that this treatment intensified differential weight gains among queens with different Pgm-3 genotypes. Manipulation of the amount of food provided to colonies had no effect on queen weight. 6. The combined data indicate that cumulative pheromone level and brood/worker ratio are two of the factors responsible for the differences in reproductive phenotypes between monogynous and polygynous winged queens but that these factors are not directly responsible for inducing the phenotypic effects of Pgm-3 in polygynous colonies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Chronic hepatitis C infection is a major cause of end-stage liver disease. Therapy outcome is influenced by 25-OH vitamin D deficiency. To further address this observation, our study investigates the impact of the vitamin D receptor (NR1I1) haplotype and combined effects of plasma vitamin D levels in a well-described cohort of hepatitis C patients. METHODS: A total of 155 chronic hepatitis C patients were recruited from the Swiss Hepatitis C Cohort Study for NR1I1 genotyping and plasma 25-OH vitamin D level measurement. NR1I1 genotype data and combined effects of plasma 25-OH vitamin D level were analysed regarding therapy response (sustained virological response). RESULTS: A strong association was observed between therapy non-response and the NR1I1 CCA (bAt) haplotype consisting of rs1544410 (BsmI) C, rs7975232 (ApaI) C and rs731236 (TaqI) A alleles. Of the HCV patients carrying the CCA haplotype, 50.3% were non-responders (odds ratio [OR] 1.69, 95% CI 1.07, 2.67; P=0.028). A similar association was observed for the combinational CCCCAA genotype (OR 2.94, 95% CI 1.36, 6.37; P=0.007). The combinational CCCCAA genotype was confirmed as an independent risk factor for non-response in multivariate analysis (OR 2.50, 95% CI 1.07, 5.87; P=0.034). Analysing combined effects, a significant impact of low 25-OH vitamin D levels on sustained virological response were only seen in patients with the unfavourable NR1I1 CCA (bAt) haplotype (OR for non-SVR 3.55; 95% CI 1.005, 12.57; P=0.049). CONCLUSIONS: NR1I1 vitamin D receptor polymorphisms influence response to pegylated-interferon/ribavirin-based therapy in chronic hepatitis C and exert an additive genetic predisposition to previously described low 25-OH vitamin D serum levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CD44 adhesion receptor is silenced in highly malignant neuroblastomas (NBs) with MYCN amplification. Because its functional expression is associated with decreased tumorigenic properties, CD44 behaves as a tumor suppressor gene in NB and other cancers. Given that the precise mechanisms responsible for CD44 silencing are not elucidated, we investigated whether CD44 expression could be regulated by DNA hypermethylation. The methylation status of CD44 gene promoter and exon 1 regions was analyzed in 12 NB cell lines and 21 clinical samples after bisulfite genomic modification, followed by PCR and single-strand conformation polymorphism analysis and genomic sequencing. The results showed that almost all CD44-negative cell lines displayed hypermethylation in both regions, whereas all CD44-expressing cell lines were unmethylated. These observations correlated with the ability to restore CD44 mRNA and protein expression by treatment of CD44-negative cells with the 5-aza-2'-deoxycytidine demethylating agent. In contrast, no CD44 gene hypermethylation could be detected in 21 NB clinical samples of different stages, irrespective of CD44 expression. Although our results suggest that aberrant methylation of promoter and exon 1 regions is involved in CD44 silencing in NB cell lines, they also indicate that methylation of unidentified regulatory sequences or methylation-independent mechanisms also control the expression of CD44 in primary NB tumors and cell lines. We therefore conclude that CD44 silencing is controlled by complex and tumor cell-specific processes, including gene hypermethylation. Further investigation of other mechanisms and genes involved in CD44 regulation will be needed before demethylation-mediated reactivation of the CD44 gene can be considered as therapeutic strategy for neuroblastoma and perhaps other related cancers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Les études GVvA (Genome-wide association ,-studies) ont identifié et confirmé plus de 20 gènes de susceptibilité au DT2 et ont contribué à mieux comprendre sa physiopathologie. L'hyperglycémie à jeun (GJ), et 2 heures après une HGPO (G2h) sont les deux mesures cliniques du diagnostic du DT2. Nous avons identifié récemment la G6P du pancréas (G6PC2) comme déterminant de la variabilité physiologique de la GJ puis Ie récepteur à la mélatonine (MTNRIB) qui de plus lie la régulation du rythme circadien au DT2. Dans ce travail nous avons étudié la génétique de la G2h à l'aide de l'approche GWA. Résultats: Nous avons réalisé une méta-analyse GWA dans le cadre de MAGIC (Meta-Analysis of Glucose and Insulin related traits Consortium) qui a inclus 9 études GWA (N=15'234). La réplication de 29 loci (N=6958-30 121, P < 10-5 ) a confirmé 5 nouveaux loci; 2 étant connus comme associés avec Ie DT2 (TCF7L2, P = 1,6 X 10-10 ) et la GJ (GCKR, p = 5,6 X 10-10 ); alors que GIPR (p= 5,2 X 10-12), VSP13C (p= 3,9 X 10-8) et ADCY5 (p = 1,11 X 10-15 ) sont inédits. GIPR code Ie récepteur au GIP (gastric inhibitory polypeptide) qui est sécrété par les ceIlules intestinales pour stimuler la sécrétion de l'insuline en réponse au glucose (l'effet incrétine). Les porteurs du variant GIPR qui augmente la G2h ont également un indice insulinogénique plus bas, (p= 1,0 X 10-17) mais ils ne présentent aucune modification de leur glycémie suite à une hyperglycémie provoquée par voie veineuse (p= 0,21). Ces résultats soutiennent un effet incrétine du locus GIPR qui expliquerait ~9,6 % de la variance total de ce trait. La biologie de ADCY5 et VPS13C et son lien avec l'homéostasie du glucose restent à élucider. GIPR n'est pas associé avec le risque de DT2 indiquant qu'il influence la variabilité physiologique de la G2h alors que le locus ADCY5 est associé avec le DT2 (OR = 1,11, P = 1,5 X 10-15). Conclusion: Notre étude démontre que l'étude de la G2h est une approche efficace d'une part pour la compréhension de la base génétique de la physiologie de ce trait clinique important et d'autre part pour identifier de nouveaux gènes de susceptibilité au DT2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The single nucleotide polymorphism (SNP) rs2542151 within the gene locus region encoding protein tyrosine phosphatase non-receptor type 2 (PTPN2) has been associated with Crohn's disease (CD), ulcerative colitis (UC), type-I diabetes, and rheumatoid arthritis. We have previously shown that PTPN2 regulates mitogen-activated protein kinase (MAPK) signaling and cytokine secretion in human THP-1 monocytes and intestinal epithelial cells (IEC). Here, we studied whether intronic PTPN2 SNP rs1893217 regulates immune responses to the nucleotide-oligomerization domain 2 (NOD2) ligand, muramyl-dipeptide (MDP). MATERIALS AND METHODS: Genomic DNA samples from 343 CD and 663 non-IBD control patients (male and female) from a combined German, Swiss, and Polish cohort were genotyped for the presence of the PTPN2 SNPs, rs2542151, and rs1893217. PTPN2-variant rs1893217 was introduced into T(84) IEC or THP-1 cells using a lentiviral vector. RESULTS: We identified a novel association between the genetic variant, rs1893217, located in intron 7 of the PTPN2 gene and CD. Human THP-1 monocytes carrying this variant revealed increased MAPK activation as well as elevated mRNA expression of T-bet transcription factor and secretion of interferon-γ in response to the bacterial wall component, MDP. In contrast, secretion of interleukin-8 and tumor necrosis factor were reduced. In both, T(84) IEC and THP-1 monocytes, autophagosome formation was impaired. CONCLUSIONS: We identified a novel CD-associated PTPN2 variant that modulates innate immune responses to bacterial antigens. These findings not only provide key insights into the effects of a functional mutation on a clinically relevant gene, but also reveal how such a mutation could contribute to the onset of disease.