970 resultados para Covariance estimate
Resumo:
Atmospheric aerosols cause scattering and absorption of incoming solar radiation. Additional anthropogenic aerosols released into the atmosphere thus exert a direct radiative forcing on the climate system1. The degree of present-day aerosol forcing is estimated from global models that incorporate a representation of the aerosol cycles1–3. Although the models are compared and validated against observations, these estimates remain uncertain. Previous satellite measurements of the direct effect of aerosols contained limited information about aerosol type, and were confined to oceans only4,5. Here we use state-of-the-art satellitebased measurements of aerosols6–8 and surface wind speed9 to estimate the clear-sky direct radiative forcing for 2002, incorporating measurements over land and ocean. We use a Monte Carlo approach to account for uncertainties in aerosol measurements and in the algorithm used. Probability density functions obtained for the direct radiative forcing at the top of the atmosphere give a clear-sky, global, annual average of 21.9Wm22 with standard deviation, 60.3Wm22. These results suggest that present-day direct radiative forcing is stronger than present model estimates, implying future atmospheric warming greater than is presently predicted, as aerosol emissions continue to decline10.
Resumo:
The main uncertainty in anthropogenic forcing of the Earth’s climate stems from pollution aerosols, particularly their ‘‘indirect effect’’ whereby aerosols modify cloud properties. We develop a new methodology to derive a measurement-based estimate using almost exclusively information from an Earth radiation budget instrument (CERES) and a radiometer (MODIS). We derive a statistical relationship between planetary albedo and cloud properties, and, further, between the cloud properties and column aerosol concentration. Combining these relationships with a data set of satellite-derived anthropogenic aerosol fraction, we estimate an anthropogenic radiative forcing of �-0.9 ± 0.4 Wm�-2 for the aerosol direct effect and of �-0.2 ± 0.1 Wm�-2 for the cloud albedo effect. Because of uncertainties in both satellite data and the method, the uncertainty of this result is likely larger than the values given here which correspond only to the quantifiable error estimates. The results nevertheless indicate that current global climate models may overestimate the cloud albedo effect.
Resumo:
Sensible heat fluxes (QH) are determined using scintillometry and eddy covariance over a suburban area. Two large aperture scintillometers provide spatially integrated fluxes across path lengths of 2.8 km and 5.5 km over Swindon, UK. The shorter scintillometer path spans newly built residential areas and has an approximate source area of 2-4 km2, whilst the long path extends from the rural outskirts to the town centre and has a source area of around 5-10 km2. These large-scale heat fluxes are compared with local-scale eddy covariance measurements. Clear seasonal trends are revealed by the long duration of this dataset and variability in monthly QH is related to the meteorological conditions. At shorter time scales the response of QH to solar radiation often gives rise to close agreement between the measurements, but during times of rapidly changing cloud cover spatial differences in the net radiation (Q*) coincide with greater differences between heat fluxes. For clear days QH lags Q*, thus the ratio of QH to Q* increases throughout the day. In summer the observed energy partitioning is related to the vegetation fraction through use of a footprint model. The results demonstrate the value of scintillometry for integrating surface heterogeneity and offer improved understanding of the influence of anthropogenic materials on surface-atmosphere interactions.
Resumo:
A class identification algorithms is introduced for Gaussian process(GP)models.The fundamental approach is to propose a new kernel function which leads to a covariance matrix with low rank,a property that is consequently exploited for computational efficiency for both model parameter estimation and model predictions.The objective of either maximizing the marginal likelihood or the Kullback–Leibler (K–L) divergence between the estimated output probability density function(pdf)and the true pdf has been used as respective cost functions.For each cost function,an efficient coordinate descent algorithm is proposed to estimate the kernel parameters using a one dimensional derivative free search, and noise variance using a fast gradient descent algorithm. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.
Resumo:
Observations of turbulent fluxes of momentum, heat and moisture from low-level aircraft data are presented. Fluxes are calculated using the eddy covariance technique from flight legs typically ∼40 m above the sea surface. Over 400 runs of 2 min (∼12 km) from 26 flights are evaluated. Flight legs are mainly from around the British Isles although a small number are from around Iceland and Norway. Sea-surface temperature (SST) observations from two on-board sensors (the ARIES interferometer and a Heimann radiometer) and a satellite-based analysis (OSTIA) are used to determine an improved SST estimate. Most of the observations are from moderate to strong wind speed conditions, the latter being a regime short of validation data for the bulk flux algorithms that are necessary for numerical weather prediction and climate models. Observations from both statically stable and unstable atmospheric boundary-layer conditions are presented. There is a particular focus on several flights made as part of the DIAMET (Diabatic influence on mesoscale structures in extratropical storms) project. Observed neutral exchange coefficients are in the same range as previous studies, although higher for the momentum coefficient, and are broadly consistent with the COARE 3.0 bulk flux algorithm, as well as the surface exchange schemes used in the ECMWF and Met Office models. Examining the results as a function of aircraft heading shows higher fluxes and exchange coefficients in the across-wind direction, compared to along-wind (although this comparison is limited by the relatively small number of along-wind legs). A multi-resolution spectral decomposition technique demonstrates a lengthening of spatial scales in along-wind variances in along-wind legs, implying the boundary-layer eddies are elongated in the along-wind direction. The along-wind runs may not be able to adequately capture the full range of turbulent exchange that is occurring because elongation places the largest eddies outside of the run length.
Resumo:
For certain observing types, such as those that are remotely sensed, the observation errors are correlated and these correlations are state- and time-dependent. In this work, we develop a method for diagnosing and incorporating spatially correlated and time-dependent observation error in an ensemble data assimilation system. The method combines an ensemble transform Kalman filter with a method that uses statistical averages of background and analysis innovations to provide an estimate of the observation error covariance matrix. To evaluate the performance of the method, we perform identical twin experiments using the Lorenz ’96 and Kuramoto-Sivashinsky models. Using our approach, a good approximation to the true observation error covariance can be recovered in cases where the initial estimate of the error covariance is incorrect. Spatial observation error covariances where the length scale of the true covariance changes slowly in time can also be captured. We find that using the estimated correlated observation error in the assimilation improves the analysis.
Resumo:
Time series of global and regional mean Surface Air Temperature (SAT) anomalies are a common metric used to estimate recent climate change. Various techniques can be used to create these time series from meteorological station data. The degree of difference arising from using five different techniques, based on existing temperature anomaly dataset techniques, to estimate Arctic SAT anomalies over land and sea ice were investigated using reanalysis data as a testbed. Techniques which interpolated anomalies were found to result in smaller errors than non-interpolating techniques relative to the reanalysis reference. Kriging techniques provided the smallest errors in estimates of Arctic anomalies and Simple Kriging was often the best kriging method in this study, especially over sea ice. A linear interpolation technique had, on average, Root Mean Square Errors (RMSEs) up to 0.55 K larger than the two kriging techniques tested. Non-interpolating techniques provided the least representative anomaly estimates. Nonetheless, they serve as useful checks for confirming whether estimates from interpolating techniques are reasonable. The interaction of meteorological station coverage with estimation techniques between 1850 and 2011 was simulated using an ensemble dataset comprising repeated individual years (1979-2011). All techniques were found to have larger RMSEs for earlier station coverages. This supports calls for increased data sharing and data rescue, especially in sparsely observed regions such as the Arctic.
Resumo:
Airborne measurements within the urban mixing layer (360 m) over Greater London are used to quantify CO2 emissions at the meso-scale. Daytime CO2 fluxes, calculated by the Integrative Mass Boundary Layer (IMBL) method, ranged from 46 to 104 μmol CO2 m−2 s−1 for four days in October 2011. The day-to-day variability of IMBL fluxes is at the same order of magnitude as for surface eddy-covariance fluxes observed in central London. Compared to fluxes derived from emissions inventory, the IMBL method gives both lower (by −37%) and higher (by 19%) estimates. The sources of uncertainty of applying the IMBL method in urban areas are discussed and guidance for future studies is given.
Resumo:
Spatially dense observations of gust speeds are necessary for various applications, but their availability is limited in space and time. This work presents an approach to help to overcome this problem. The main objective is the generation of synthetic wind gust velocities. With this aim, theoretical wind and gust distributions are estimated from 10 yr of hourly observations collected at 123 synoptic weather stations provided by the German Weather Service. As pre-processing, an exposure correction is applied on measurements of the mean wind velocity to reduce the influence of local urban and topographic effects. The wind gust model is built as a transfer function between distribution parameters of wind and gust velocities. The aim of this procedure is to estimate the parameters of gusts at stations where only wind speed data is available. These parameters can be used to generate synthetic gusts, which can improve the accuracy of return periods at test sites with a lack of observations. The second objective is to determine return periods much longer than the nominal length of the original time series by considering extreme value statistics. Estimates for both local maximum return periods and average return periods for single historical events are provided. The comparison of maximum and average return periods shows that even storms with short average return periods may lead to local wind gusts with return periods of several decades. Despite uncertainties caused by the short length of the observational records, the method leads to consistent results, enabling a wide range of possible applications.
Resumo:
Theoretical estimates for the cutoff errors in the Ewald summation method for dipolar systems are derived. Absolute errors in the total energy, forces and torques, both for the real and reciprocal space parts, are considered. The applicability of the estimates is tested and confirmed in several numerical examples. We demonstrate that these estimates can be used easily in determining the optimal parameters of the dipolar Ewald summation in the sense that they minimize the computation time for a predefined, user set, accuracy.
Resumo:
Inverse methods are widely used in various fields of atmospheric science. However, such methods are not commonly used within the boundary-layer community, where robust observations of surface fluxes are a particular concern. We present a new technique for deriving surface sensible heat fluxes from boundary-layer turbulence observations using an inverse method. Doppler lidar observations of vertical velocity variance are combined with two well-known mixed-layer scaling forward models for a convective boundary layer (CBL). The inverse method is validated using large-eddy simulations of a CBL with increasing wind speed. The majority of the estimated heat fluxes agree within error with the proscribed heat flux, across all wind speeds tested. The method is then applied to Doppler lidar data from the Chilbolton Observatory, UK. Heat fluxes are compared with those from a mast-mounted sonic anemometer. Errors in estimated heat fluxes are on average 18 %, an improvement on previous techniques. However, a significant negative bias is observed (on average −63%) that is more pronounced in the morning. Results are improved for the fully-developed CBL later in the day, which suggests that the bias is largely related to the choice of forward model, which is kept deliberately simple for this study. Overall, the inverse method provided reasonable flux estimates for the simple case of a CBL. Results shown here demonstrate that this method has promise in utilizing ground-based remote sensing to derive surface fluxes. Extension of the method is relatively straight-forward, and could include more complex forward models, or other measurements.
Resumo:
Scintillometry, a form of ground-based remote sensing, provides the capability to estimate surface heat fluxes over scales of a few hundred metres to kilometres. Measurements are spatial averages, making this technique particularly valuable over areas with moderate heterogeneity such as mixed agricultural or urban environments. In this study, we present the structure parameters of temperature and humidity, which can be related to the sensible and latent heat fluxes through similarity theory, for a suburban area in the UK. The fluxes are provided in the second paper of this two-part series. A millimetre-wave scintillometer was combined with an infrared scintillometer along a 5.5 km path over northern Swindon. The pairing of these two wavelengths offers sensitivity to both temperature and humidity fluctuations, and the correlation between wavelengths is also used to retrieve the path-averaged temperature–humidity correlation. Comparison is made with structure parameters calculated from an eddy covariance station located close to the centre of the scintillometer path. The performance of the measurement techniques under different conditions is discussed. Similar behaviour is seen between the two data sets at sub-daily timescales. For the two summer-to-winter periods presented here, similar evolution is displayed across the seasons. A higher vegetation fraction within the scintillometer source area is consistent with the lower Bowen ratio observed (midday Bowen ratio < 1) compared with more built-up areas around the eddy covariance station. The energy partitioning is further explored in the companion paper.
Resumo:
We utilized an ecosystem process model (SIPNET, simplified photosynthesis and evapotranspiration model) to estimate carbon fluxes of gross primary productivity and total ecosystem respiration of a high-elevation coniferous forest. The data assimilation routine incorporated aggregated twice-daily measurements of the net ecosystem exchange of CO2 (NEE) and satellite-based reflectance measurements of the fraction of absorbed photosynthetically active radiation (fAPAR) on an eight-day timescale. From these data we conducted a data assimilation experiment with fifteen different combinations of available data using twice-daily NEE, aggregated annual NEE, eight-day f AP AR, and average annual fAPAR. Model parameters were conditioned on three years of NEE and fAPAR data and results were evaluated to determine the information content from the different combinations of data streams. Across the data assimilation experiments conducted, model selection metrics such as the Bayesian Information Criterion and Deviance Information Criterion obtained minimum values when assimilating average annual fAPAR and twice-daily NEE data. Application of wavelet coherence analyses showed higher correlations between measured and modeled fAPAR on longer timescales ranging from 9 to 12 months. There were strong correlations between measured and modeled NEE (R2, coefficient of determination, 0.86), but correlations between measured and modeled eight-day fAPAR were quite poor (R2 = −0.94). We conclude that this inability to determine fAPAR on eight-day timescale would improve with the considerations of the radiative transfer through the plant canopy. Modeled fluxes when assimilating average annual fAPAR and annual NEE were comparable to corresponding results when assimilating twice-daily NEE, albeit at a greater uncertainty. Our results support the conclusion that for this coniferous forest twice-daily NEE data are a critical measurement stream for the data assimilation. The results from this modeling exercise indicate that for this coniferous forest, average annuals for satellite-based fAPAR measurements paired with annual NEE estimates may provide spatial detail to components of ecosystem carbon fluxes in proximity of eddy covariance towers. Inclusion of other independent data streams in the assimilation will also reduce uncertainty on modeled values.
Resumo:
Two methods are developed to estimate net surface energy fluxes based upon satellite-based reconstructions of radiative fluxes at the top of atmosphere and the atmospheric energy tendencies and transports from the ERA-Interim reanalysis. Method 1 applies the mass adjusted energy divergence from ERA-Interim while method 2 estimates energy divergence based upon the net energy difference at the top of atmosphere and the surface from ERA-Interim. To optimise the surface flux and its variability over ocean, the divergences over land are constrained to match the monthly area mean surface net energy flux variability derived from a simple relationship between the surface net energy flux and the surface temperature change. The energy divergences over the oceans are then adjusted to remove an unphysical residual global mean atmospheric energy divergence. The estimated net surface energy fluxes are compared with other data sets from reanalysis and atmospheric model simulations. The spatial correlation coefficients of multi-annual means between the estimations made here and other data sets are all around 0.9. There are good agreements in area mean anomaly variability over the global ocean, but discrepancies in the trend over the eastern Pacific are apparent.
Resumo:
We establish an uniform factorial decay estimate for the Taylor approximation of solutions to controlled differential equations. Its proof requires a factorial decay estimate for controlled paths which is interesting in its own right.