919 resultados para Cortisol metabolites
Resumo:
Milk cortisol concentration was determined under routine management conditions on 4 farms with an auto-tandem milking parlor and 8 farms with 1 of 2 automatic milking systems (AMS). One of the AMS was a partially forced (AMSp) system, and the other was a free cow traffic (AMSf) system. Milk samples were collected for all the cows on a given farm (20 to 54 cows) for at least 1 d. Behavioral observations were made during the milking process for a subset of 16 to 20 cows per farm. Milk cortisol concentration was evaluated by milking system, time of day, behavior during milking, daily milk yield, and somatic cell count using linear mixed-effects models. Milk cortisol did not differ between systems (AMSp: 1.15 +/- 0.07; AMSf: 1.02 +/- 0.12; auto-tandem parlor: 1.01 +/- 0.16 nmol/L). Cortisol concentrations were lower in evening than in morning milkings (1.01 +/- 0.12 vs. 1.24 +/- 0.13 nmol/L). The daily periodicity of cortisol concentration was characterized by an early morning peak and a late afternoon elevation in AMSp. A bimodal pattern was not evident in AMSf. Finally, milk cortisol decreased by a factor of 0.915 in milking parlors, by 0.998 in AMSp, and increased by a factor of 1.161 in AMSf for each unit of ln(somatic cell count/1,000). We conclude that milking cows in milking parlors or AMS does not result in relevant stress differences as measured by milk cortisol concentrations. The biological relevance of the difference regarding the daily periodicity of milk cortisol concentrations observed between the AMSp and AMSf needs further investigation.
Resumo:
Parasites are linked with their host in a trophic interaction with implications for both hosts and parasites. Interaction stretches from the host's immune response to the structuring of communities and the evolution of biodiversity. As in many species sex determines life history strategy, response to parasites may be sex-specific. Males of vertebrate species tend to exhibit higher rates of parasites than females. Sex-associated hormones may influence immunocompetence and are hypothesised to lead to this bias. In a field study, we tested the prediction of male biased parasitism (MBP) in free ranging chamois (Rupicapra rupicapra rupicapra), which are infested intensely by gastrointestinal and lung helminths. We further investigated sex differences in faecal androgen (testosterone and epiandrosterone), cortisol and oestrogen metabolites using enzyme immunoassays (EIA) to evaluate the impact of these hormones on sex dependent parasite susceptibility. Non-invasive methods were used and the study was conducted throughout a year to detect seasonal patterns. Hormone levels and parasite counts varied significantly throughout the year. Male chamois had a higher output of gastrointestinal eggs and lungworm larvae when compared to females. The hypothesis of MBP originating in sex related hormone levels was confirmed for the elevated output of lungworm larvae, but not for the gastrointestinal nematodes. The faecal output of lungworm larvae was significantly correlated with androgen and cortisol metabolite levels. Our study shows that sex differences in steroid levels play an important role to explain MBP, although they alone cannot fully explain the phenomenon.
Resumo:
Permission from the ethics committee and informed consent were obtained. The purpose of this study was to prospectively evaluate a method developed for the noninvasive assessment of muscle metabolites during exercise. Hydrogen 1 magnetic resonance (MR) spectroscopy peaks were measured during tetanic isometric muscle contraction imposed by supramaximal repetitive nerve stimulation. The kinetics of creatine-phosphocreatine and acetylcarnitine signal changes (P < .001) could be assessed continuously before, during, and after exercise. The control peak (trimethylammonium compounds), which served as an internal reference, did not change. This technique-that is, functional MR spectroscopy-opens the possibility for noninvasive diagnostic muscle metabolite testing in a clinical setting.
Resumo:
In view of the growing health problem associated with obesity, clarification of the regulation of energy homeostasis is important. Peripheral signals, such as ghrelin and leptin, have been shown to influence energy homeostasis. Nutrients and physical exercise, in turn, influence hormone levels. Data on the hormonal response to physical exercise (standardized negative energy balance) after high-fat (HF) or low-fat (LF) diet with identical carbohydrate intake are currently not available. The aim of the study was to investigate whether a short-term dietary intervention with HF and LF affects ghrelin and leptin levels and their modulators, GH, insulin and cortisol, before and during aerobic exercise. Eleven healthy, endurance-trained male athletes (W(max) 365 +/- 29 W) were investigated twice in a randomized crossover design following two types of diet: 1. LF - 0.5 g fat/kg body weight (BW) per day for 2.5 days; 2. HF - 0.5 g fat/kg BW per day for 1 day followed by 3.5 g fat/kg BW per day for 1.5 days. After a standardized carbohydrate snack in the morning, metabolites and hormones (GH, ghrelin, leptin, insulin and cortisol) were measured before and at regular intervals throughout a 3-h aerobic exercise test on a cycloergometer at 50% of W(max). Diet did not significantly affect GH and cortisol concentrations during exercise but resulted in a significant increase in ghrelin and decrease in leptin concentrations after LF compared with HF diet (area under the curve (AUC) ghrelin LF vs HF: P < 0.03; AUC leptin LF vs HF: P < 0.02, Wilcoxon rank test). These data suggest that acute negative energy balance induced by exercise elicits a hormonal response with opposite changes of ghrelin and leptin. In addition, the hormonal response is modulated by the preceding intake of fat.
Resumo:
Pneumococcal meningitis (PM) is characterized by an intense inflammatory host reaction that contributes to the development of cortical necrosis and hippocampal apoptosis. Inflammatory conditions in the brain are known to induce tryptophan degradation along the kynurenine pathway, resulting in accumulation of neurotoxic metabolites. In the present study, we investigated the contribution of the kynurenine pathway to brain injury in experimental PM by measuring the concentration of its metabolites and the enzymatic activities and mRNA levels of its major enzymes in the vulnerable brain regions. In the late phase of acute PM, we found a significant transcriptional upregulation of kynurenine-3-hydroxylase and an accumulation of the neurotoxic metabolites 3-hydroxykynurenine (3-HKYN) and 3-hydroxyanthranilic acid in cortex and hippocampus. The positive correlation between the concentration of 3-HKYN and the extent of hippocampal apoptosis adds support to the concept that 3-HKYN contributes to brain injury in PM.
Resumo:
(-)-Menthol, a monoterpene from Mentha species (Lamiaceae), has been shown to inhibit bone resorption in vivo by an unknown mechanism. In the present study, plasma and urine profiling in rats determined by GC/MS demonstrate that (-)-menthol is extensively metabolized, mainly by hydroxylation and carboxylation, and excreted in the urine, in part as glucuronides. In plasma, very low concentrations of (-)-menthol metabolites were detected after a single dose of (-)-menthol, whereas after repeated treatment, several times higher concentrations and long residence times were measured. In contrast, the elimination of unchanged (-)-menthol was increased by repeated treatment. (-)-Menthol, at concentrations found in plasma, did not inhibit bone resorption in cultured mouse calvaria (skull). However, the neutral metabolites of (-)-menthol, extracted from urine of rats fed with (-)-menthol, inhibited bone resorption in vitro, the concentrations being at plasma level or higher. These results suggest that not (-)-menthol itself, but one or several of its neutral metabolites inhibit the bone resorbing cells in vivo.
Resumo:
We investigated the association between exhaustion and the habituation of free cortisol responses to repeated stress exposure. The study comprised 25 healthy male subjects (38-59 years) who were confronted three times with the Trier Social Stress Test. Mean cortisol responses showed the well-known general habituation effect. A two-way interaction day by exhaustion (p<0.05) indicated that mean cortisol responses vary across stress sessions depending on the extent of exhaustion. Linear regression revealed a negative dose-response relationship between exhaustion and the degree of habituation (p<0.02). We identified 19 individuals showing a response habituation (negative slope) and 6 individuals showing a response sensitization over the three sessions (positive slope) with the latter reporting higher exhaustion scores. It might be hypothesized that impaired habituation to repeated exposure to the same stressor could reflect a state of increased vulnerability for allostatic load. Absence of normal habituation might be one potential mechanism how exhaustion relates to increased disease vulnerability.
Resumo:
CE with multiple isomer sulfated beta-CD as the chiral selector was assessed for the simultaneous analysis of the enantiomers of ketamine and metabolites in extracts of equine plasma and urine. Different lots of the commercial chiral selector provided significant changes in enantiomeric ketamine separability, a fact that can be related to the manufacturing variability. A mixture of two lots was found to provide high-resolution separations and interference-free detection of the enantiomers of ketamine, norketamine, dehydronorketamine, and an incompletely identified hydroxylated metabolite of norketamine in liquid/liquid extracts of the two body fluids. Ketamine, norketamine, and dehydronorketamine could be unambiguously identified via HPLC fractionation of urinary extracts and using LC-MS and LC-MS/MS with 1 mmu mass discrimination. The CE assay was used to characterize the stereoselectivity of the compounds' enantiomers in the samples of five ponies anesthetized with isoflurane in oxygen and treated with intravenous continuous infusion of racemic ketamine. The concentrations of the ketamine enantiomers in plasma are equal, whereas the urinary amount of R-ketamine is larger than that of S-ketamine. Plasma and urine contain higher S- than R-norketamine levels and the mean S-/R-enantiomer ratios of dehydronorketamine in plasma and urine are lower than unity and similar.
Resumo:
BACKGROUND: T-cell-mediated hypersensitivity is a rare but serious manifestation of drug therapy. OBJECTIVES: To explore the mechanisms of drug presentation to T cells and the possibility that generation of metabolite-specific T cells may provoke cross-sensitization between drugs. METHODS: A lymphocyte transformation test was performed on 13 hypersensitive patients with carbamazepine, oxcarbazepine, and carbamazepine metabolites. Serial dilution experiments were performed to generate drug (metabolite)-specific T-cell clones to explore the structural basis of the T-cell response and mechanisms of antigen presentation. 3-Dimensional energy-minimized structures were generated by using computer modeling. The role of drug metabolism was analyzed with 1-aminobenzotriazole. RESULTS: Lymphocytes and T-cell clones proliferated with carbamazepine, oxcarbazepine, and some (carbamazepine 10,11 epoxide, 10-hydroxy carbamazepine) but not all stable carbamazepine metabolites. Structure activity studies using 29 carbamazepine (metabolite)-specific T-cell clones revealed 4 patterns of drug recognition, which could be explained by generation of preferred 3-dimensional structural conformations. T cells were stimulated by carbamazepine (metabolites) bound directly to MHC in the absence of processing. The activation threshold for T-cell proliferation varied between 5 minutes and 4 hours. 1-Aminobenzotriazole, which inhibits cytochrome P450 activity, did not prevent carbamazepine-related T-cell proliferation. Substitution of the terminal amine residue of carbamazepine with a methyl group diminished T-cell proliferation. CONCLUSION: These data show that carbamazepine and certain stable carbamazepine metabolites stimulate T cells rapidly via a direct interaction with MHC and specific T-cell receptors. CLINICAL IMPLICATIONS: Some patients with a history of carbamazepine hypersensitivity possess T cells that cross-react with oxcarbazepine, providing a rationale for cross-sensitivity between the 2 drugs.
Resumo:
This study compared for seabream, Sparus aurata exposed to benzo(a)pyrene-B(a)P-, the response of molecular cytochrome P450 1A (CYP1A) and cellular histopathology biomarkers. Male gilthead seabream, Sparus aurata specimens were exposed for 20 days via water to a series of high B(a)P concentrations. CYP1A was assessed by measuring enzymatic activity (EROD) and CYP1A protein content, and cellular responses were evaluated by routine histopathological methods. In addition, biliary metabolites were measured in order to verify that B(a)P was absorbed and metabolised. Histological lesions, both in liver and gills, increased in parallel to B(a)P concentrations, with the majority of changes representing rather non-specific alterations. Hepatic EROD and CYP1A proteins data showed a concentration-dependent induction, while in the gills, EROD activity but not CYP1A proteins showed a non-monotonous dose response, with a maximum induction level at 200 microg B(a)P.L-1 and decreasing levels thereafter. The findings provide evidence that short-term, high dose exposure of fish can result in significant uptake and metabolism of the lipophilic B(a)P, and in pronounced pathological damage of absorptive epithelia and internal organs.
Resumo:
BACKGROUND: The role of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) in the regulation of energy metabolism and immune system by locally reactivating glucocorticoids has been extensively studied. Experiments determining initial rates of enzyme activity revealed that 11beta-HSD1 can catalyze both the reductase and the dehydrogenase reaction in cell lysates, whereas it predominantly catalyzes the reduction of cortisone to cortisol in intact cells that also express hexose-6-phosphate dehydrogenase (H6PDH), which provides cofactor NADPH. Besides its role in glucocorticoid metabolism, there is evidence that 11beta-HSD1 is involved in the metabolism of 7-keto- and 7-hydroxy-steroids; however the impact of H6PDH on this alternative function of 11beta-HSD1 has not been assessed. METHODOLOGY: We investigated the 11beta-HSD1-dependent metabolism of the neurosteroids 7-keto-, 7alpha-hydroxy- and 7beta-hydroxy-dehydroepiandrosterone (DHEA) and 7-keto- and 7beta-hydroxy-pregnenolone, respectively, in the absence or presence of H6PDH in intact cells. 3D-structural modeling was applied to study the binding of ligands in 11beta-HSD1. PRINCIPAL FINDINGS: We demonstrated that 11beta-HSD1 functions in a reversible way and efficiently catalyzed the interconversion of these 7-keto- and 7-hydroxy-neurosteroids in intact cells. In the presence of H6PDH, 11beta-HSD1 predominantly converted 7-keto-DHEA and 7-ketopregnenolone into their corresponding 7beta-hydroxy metabolites, indicating a role for H6PDH and 11beta-HSD1 in the local generation of 7beta-hydroxy-neurosteroids. 3D-structural modeling offered an explanation for the preferred formation of 7beta-hydroxy-neurosteroids. CONCLUSIONS: Our results from experiments determining the steady state concentrations of glucocorticoids or 7-oxygenated neurosteroids suggested that the equilibrium between cortisone and cortisol and between 7-keto- and 7-hydroxy-neurosteroids is regulated by 11beta-HSD1 and greatly depends on the coexpression with H6PDH. Thus, the impact of H6PDH on 11beta-HSD1 activity has to be considered for understanding both glucocorticoid and neurosteroid action in different tissues.
Resumo:
Reduced activity of 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) plays a role in essential hypertension and the sensitivity of blood pressure to dietary salt. Nonconservative mutations in the coding region are extremely rare and do not explain the variable 11beta-HSD2 activity. We focused therefore on the 5'-regulatory region and identified and characterized the first promoter polymorphisms. Transfections of variants G-209A and G-126A into SW620 cells reduced promoter activity and affinity for activators nuclear factor 1 (NF1) and Sp1. Chromatin immunoprecipitation revealed Sp1, NF1, and glucocorticoid receptor (GR) binding to the HSD11B2 promoter. Dexamethasone induced expression of mRNA and activity of HSD11B2. GR and/or NF1 overexpression increased endogenous HSD11B2 mRNA and activity. GR complexes cooperated with NF1 to activate HSD11B2, an effect diminished in the presence of the G-209A variant. When compared to salt-resistant subjects (96), salt-sensitive volunteers (54) more frequently had the G-209A variant, higher occurrence of alleles A4/A7 of polymorphic microsatellite marker, and higher urinary ratios of cortisol to cortisone metabolites. First, we conclude that the mechanism of glucocorticoid-induced HSD11B2 expression is mainly mediated by cooperation between GR and NF1 on the HSD11B2 promoter and, second, that the newly identified promoter variants reduce activity and cooperation of cognate transcription factors, resulting in diminished HSD11B2 transcription, an effect favoring salt sensitivity.
Resumo:
The antioxidant properties of tryptophan and some of its oxidative metabolites were examined by measuring how efficiently they inhibited peroxyl radical-mediated oxidation of phosphatidylcholine liposomes and B-phycoerythrin. Low micromolar concentrations of 5-hydroxytryptophan, 3-hydroxykynurenine, xanthurenic acid, or 3-hydroxyanthranilic acid, but not their corresponding nonhydroxylated metabolic precursors, scavenged peroxyl radicals with high efficiency. In particular, 3-hydroxykynurenine and 3-hydroxyanthranilic acid protected B-phycoerythrin from peroxyl radical-mediated oxidative damage more effectively than equimolar amounts of either ascorbate or Trolox (a water-soluble analog of vitamin E). Enzyme activities involved or related to oxidative tryptophan metabolism, as well as endogenous concentrations of tryptophan and its metabolites, were determined within tissues of mice suffering from acute viral pneumonia. Infection resulted in a 100-fold induction of pulmonary indoleamine 2,3-dioxygenase (EC 1.13.11.17) as reported [Yoshida, R., Urade, Y., Tokuda, M. ; Hayaishi, O. (1979) Proc. Natl. Acad. Sci. USA 76, 4084-4086]. This was accompanied by a 16- and 3-fold increase in the levels of lung kynurenine and 3-hydroxykynurenine, respectively. In contrast, endogenous concentrations of tryptophan and xanthurenic acid did not increase and 3-hydroxyanthranilic acid could not be detected. The activity of the superoxide anion (O2-.)-producing enzyme xanthine oxidase increased 3.5-fold during infection while that of the O2-.-removing superoxide dismutase decreased to 50% of control levels. These results plus the known requirement of indoleamine 2,3-dioxygenase for superoxide anion for catalytic activity suggest that viral pneumonia is accompanied by oxidative stress and that induction of indoleamine 2,3-dioxygenase may represent a local antioxidant defence against this and possibly other types of inflammatory diseases.
Resumo:
Postmortem decomposition of brain tissue was investigated by (1)H-magnetic resonance spectroscopy (MRS) in a sheep head model and selected human cases. Aiming at the eventual estimation of postmortem intervals in forensic medicine, this study focuses on the characterization and identification of newly observed metabolites. In situ single-voxel (1)H-MRS at 1.5 T was complemented by multidimensional homo- and heteronuclear high-resolution NMR spectroscopy of an extract of sheep brain tissue. The inclusion of spectra of model solutions in the program LC Model confirmed the assignments in situ. The first postmortem phase was characterized mainly by changes in the concentrations of metabolites usually observed in vivo and by the appearance of previously reported decay products. About 3 days postmortem, new metabolites, including free trimethylammonium, propionate, butyrate, and iso-butyrate, started to appear in situ. Since the observed metabolites and the time course is comparable in sheep and human brain tissue, the model system seems to be appropriate.