972 resultados para Continuous Electricity-generation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model where agents show discrete behavior regarding their actions, but have continuous opinions that are updated by interacting with other agents is presented. This new updating rule is applied to both the voter and Sznajd models for interaction between neighbors, and its consequences are discussed. The appearance of extremists is naturally observed and it seems to be a characteristic of this model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been suggested that the temporal control of rhythmic unimianual movements is different between tasks requiring continuous (e.g., circle drawing) and discontinuous movements (e.g., finger tapping). Specifically, for continuous movements temporal regularities are ail emergent property, whereas for tasks that involve discontinuities timing is ail explicit part of the action goal. The present experiment further investigated the control of continuous and discontinuous movements by comparing the coordination dynamics and attentional demands of bimanual continuous circle drawing with bimanual intermittent circle drawing. The intermittent task required participants to insert a 400 ms pause between each cycle while circling. Using dual-task methodology, 15 right-handed participants performed the two circle drawing tasks, while vocally responding to randomly presented auditory probes. The circle drawing tasks were performed in symmetrical and asymmetrical coordination modes and at movement frequencies of 1 Hz and 1.7 Hz. Intermittent circle drawing exhibited superior spatial and temporal accuracy and stability than continuous circle drawing supporting the hypothesis that the two tasks have different underlying control processes. In terms of attentional cost, probe RT was significantly slower during the intermittent circle drawing task than the continuous circle drawing task across both coordination modes and movement frequencies. Of interest was the finding that in the intermittent circling task reaction time (RT) to probes presented during the pause between cycles did not differ from the RT to probes occurring during the circling movement. The differences in attentional demands between the intermittent and continuous circle drawing tasks may reflect the operation of explicit event timing and implicit emergent timing processes, respectively. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flavor compounds` formation and fermentative parameters of continuous high gravity brewing with yeasts immobilized on spent grains were evaluated at three different temperatures (7, 10 and 15 degrees C). The assays were performed in a bubble column reactor at constant dilution rate (0.05 h(-1)) and total gas flow rate (240 ml/min of CO(2) and 10 ml/min of air), with high-gravity all-malt wort (15 degrees Plato). The results revealed that as the fermentation temperature was increased from 7 to 15 degrees C, the apparent and real degrees of fermentation, rate of extract consumption, ethanol volumetric productivity and consumption of free amino nitrogen (FAN) increased. In addition, beer produced at 15 degrees C presented a higher alcohols to esters ratio (2.2-2.4:1) similar to the optimum values described in the literature. It was thus concluded that primary high-gravity (15 degrees Plato) all-malt wort fermentation by continuous process with yeasts immobilized on spent grains, can be carried out with a good performance at 15 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study deals with two innovative brewing processes, high gravity batch and complete continuous beer fermentation systems. The results show a significant influence of the variables such as concentration and temperature on the yield factor of the substrate into ethanol and consequently on the productivity of the high gravity batch process. The technological feasibility of continuous production of beer based on yeast immobilization on cheap alternative carriers was also demonstrated. The influence of process parameters on fermentation performance and quality of the obtained beers was studied by sensorial analysis. No significant difference in the degree of acceptance between the obtained products and some traditional market brands was found. (c) 2008 Institute of Chemistry, Slovak Academy of Sciences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Raman scattering study on multiple phase generation in silicon submitted to successive Vickers microindentation cycles, in different crystallographic orientations, was performed. The microindentations were perfon-ned in a virgin single crystal (100)-oriented surface, in the [001] and [011] directions. The results indicated that the formation of multiple phases by cyclic microindentation may depend on the crystallographic direction and number of successive cycles: the onset of several different structural phases was detected after the third cycle for the [001] direction and only after 15 cycles for the [011] direction, indicating that there is a crystallographic orientation dependence for multiple phase generation. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface heat treatment in glasses and ceramics, using CO(2) lasers, has attracted the attention of several researchers around the world due to its impact in technological applications, such as lab-on-a-chip devices, diffraction gratings and microlenses. Microlens fabrication on a glass surface has been studied mainly due to its importance in optical devices (fiber coupling, CCD signal enhancement, etc). The goal of this work is to present a systematic study of the conditions for microlens fabrications, along with the viability of using microlens arrays, recorded on the glass surface, as bidimensional codes for product identification. This would allow the production of codes without any residues (like the fine powder generated by laser ablation) and resistance to an aggressive environment, such as sterilization processes. The microlens arrays were fabricated using a continuous wave CO(2) laser, focused on the surface of flat commercial soda-lime silicate glass substrates. The fabrication conditions were studied based on laser power, heating time and microlens profiles. A He-Ne laser was used as a light source in a qualitative experiment to test the viability of using the microlenses as bidimensional codes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an improved constitutive equation of frame in the context of continuous medium technique. This improved constitutive equation, which is a consistent formulation of column global bending, is applicable to a complete class of frameworks including the ideal shear frame panel, for which the beams are assumed to be rigid, and the associated column system, for which the rigidity of beams is negligible. Global buckling and second-order effects of the frame structure are discussed. The main results can be extended to other types of lateral stiffening elements as built-up columns. A worked example is presented in order to compare the main results with those obtained by the classic matrix method. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of the charge distribution in laboratory generated aerosols particles was carried out. Four cases of electrostatic charge acquisition by aerosol particles were evaluated. In two of these cases. the charges acquired by the particles were naturally derived from the aerosol generation procedure itself, without using any additional charging method. Ill the other two cases, a corona charger and an impact charger were utilized as Supplementary methods for charge generation. Two types of aerosol generators were used in the dispersion of particles in the gas Stream: the vibrating orifice generator TSI model 3450 and the rotating plate generator TSI model 3433. In the vibrating orifice generator. a Solution of methylene blue Was used and the generated particles were mono-dispersed. Different mono-aerosols were generated with particle diameters varying from 6.0 x 10(-6) m to 1.4 x 10(-5) m. In the rotating plate generator, a poly-dispersed phosphate rock concentrate with Stokes mean diameter of 1.30 x 10(-6) m and size range between 1.5 x 10(-7) m and 8.0 x 10(-6) m Was utilized as powder material in all tests. In the tests performed with the mono-dispersed particles. the median charges of the particles varied between -3.0 x 10-(16) C and -5.0 x 10(-18) degrees C and a weak dependence between particle size and charge was observed. The particles were predominantly negatively charged. In the tests with the poly-dispersed particles the median charges varied fairly linearly with the particle diameter and were negative. The order of magnitude of the results obtained is in accordance with data reported in the literature. The charge distribution, in this case, was wider, so that an appreciable amount of particles were positively charged. The relative spread of the distribution varied with the charging method. It was also noticed that the corona charger acted very effectively in charging the particles. (C) 2008 Elsevier BY. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Converting aeroelastic vibrations into electricity for low power generation has received growing attention over the past few years. In addition to potential applications for aerospace structures, the goal is to develop alternative and scalable configurations for wind energy harvesting to use in wireless electronic systems. This paper presents modeling and experiments of aeroelastic energy harvesting using piezoelectric transduction with a focus on exploiting combined nonlinearities. An airfoil with plunge and pitch degrees of freedom (DOF) is investigated. Piezoelectric coupling is introduced to the plunge DOF while nonlinearities are introduced through the pitch DOF. A state-space model is presented and employed for the simulations of the piezoaeroelastic generator. A two-state approximation to Theodorsen aerodynamics is used in order to determine the unsteady aerodynamic loads. Three case studies are presented. First the interaction between piezoelectric power generation and linear aeroelastic behavior of a typical section is investigated for a set of resistive loads. Model predictions are compared to experimental data obtained from the wind tunnel tests at the flutter boundary. In the second case study, free play nonlinearity is added to the pitch DOF and it is shown that nonlinear limit-cycle oscillations can be obtained not only above but also below the linear flutter speed. The experimental results are successfully predicted by the model simulations. Finally, the combination of cubic hardening stiffness and free play nonlinearities is considered in the pitch DOF. The nonlinear piezoaeroelastic response is investigated for different values of the nonlinear-to-linear stiffness ratio. The free play nonlinearity reduces the cut-in speed while the hardening stiffness helps in obtaining persistent oscillations of acceptable amplitude over a wider range of airflow speeds. Such nonlinearities can be introduced to aeroelastic energy harvesters (exploiting piezoelectric or other transduction mechanisms) for performance enhancement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the use of simplified methods to predict methane generation in tropical landfills. Methane recovery data obtained on site as part of a research program being carried Out at the Metropolitan Landfill, Salvador, Brazil, is analyzed and used to obtain field methane generation over time. Laboratory data from MSW samples of different ages are presented and discussed: and simplified procedures to estimate the methane generation potential, L(o), and the constant related to the biodegradation rate, k are applied. The first order decay method is used to fit field and laboratory results. It is demonstrated that despite the assumptions and the simplicity of the adopted laboratory procedures, the values L(o) and k obtained are very close to those measured in the field, thus making this kind of analysis very attractive for first approach purposes. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the use of a non-destructive, continuous magnetic Barkhausen noise (CMBN) technique to investigate the size and thickness of volumetric defects, in a 1070 steel. The magnetic behavior of the used probe was analyzed by numerical simulation, using the finite element method (FEM). Results indicated that the presence of a ferrite coil core in the probe favors MBN emissions. The samples were scanned with different speeds and probe configurations to determine the effect of the flaw on the CMBN signal amplitude. A moving smooth window, based on a second-order statistical moment, was used for analyzing the time signal. The results show the technique`s good repeatability, and high capacity for detection of this type of defect. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any n x 1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum sheets are currently produced by the direct-chill process (DC). The need for low-cost aluminum sheets is a challenge for the development of new materials produced by the twin roll caster (TRC) process. It is expected that sheets produced from these different casting procedures will differ in their microstructure. These differences in microstructure and in the crystallographic texture have great impact on sheet mechanical properties and formability. The present study investigated microstructure and evaluated texture of two strips of Al-Mn-Fe-Si (3003) aluminum alloy produced by TRC and by hot-rolling processes. It was possible to notice that the microstructure, morphology, and grain size of the TRC sample were more homogenous than those found in hot-rolled samples. Both strips, obtained by the two processes, showed strong texture gradient across the thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution describes the development of a continuous emulsion copolymerization processs for vinyl acetate and n-butyl acrylate in a tubular reactor. Special features of this reactor include the use of oscillatory (pulsed) flow and internals (sieve plates) to prevent polymer fouling and promote good radial mixing, along with a controlled amount of axial mixing. The copolymer system studied (vinyl acetate and butyl acrylate) is strongly prone to composition drift due to very different reactivity ratios. An axially dispersed plug flow model, based on classical free radical copolymerization kinetics, was developed for this process and used successfully to optimize the lateral feeding profile to reduce compositional drift. An energy balance was included in the model equations to predict the effect of temperature variations on the process. The model predictions were validated with experimental data for monomer conversion, copolymer composition, average particle size, and temperature measured along the reactor length.