939 resultados para Computational music theory
Resumo:
A persistent question in the development of models for macroeconomic policy analysis has been the relative role of economic theory and evidence in their construction. This paper looks at some popular strategies that involve setting up a theoretical or conceptual model (CM) which is transformed to match the data and then made operational for policy analysis. A dynamic general equilibrium model is constructed that is similar to standard CMs. After calibration to UK data it is used to examine the utility of formal econometric methods in assessing the match of the CM to the data and also to evaluate some standard model-building strategies. Keywords: Policy oriented economic modeling; Model evaluation; VAR models
Resumo:
Differential axial shortening in vertical members of reinforced concrete high-rise buildings occurs due to shrinkage, creep and elastic shortening, which are time dependent effects of concrete. This has to be quantified in order to make adequate provisions and mitigate its adverse effects. This paper presents a novel procedure for quantifying the axial shortening of vertical members using the variations in vibration characteristics of the structure, in lieu of using gauges which can pose problems in use during and after the construction. This procedure is based on the changes in the modal flexiblity matrix which is expressed as a function of the mode shapes and the reciprocal of the natural frequencies. This paper will present the development of this novel procedure.
Resumo:
This paper examines three functions of music technology in the study of music. Firstly, as a tool, secondly, as an instrument and, lastly, as a medium for thinking. As our societies become increasingly embroiled in digital media for representation and communication, our philosophies of music education need to adapt to integrate these developments while maintaining the essence of music. The foundation of music technology in the 1990s is the digital representation of sound. It is this fundamental shift to a new medium with which to represent sound that carries with it the challenge to address digital technology and its multiple effects on music creation and presentation. In this paper I suggest that music institutions should take a broad and integrated approach to the place of music technology in their courses, based on the understanding of digital representation of sound and these three functions it can serve. Educators should reconsider digital technologies such as synthesizers and computers as music instruments and cognitive amplifiers, not simply as efficient tools.
Resumo:
Generative music systems can be performed by manipulating the values of their algorithmic parameters, and their semi-autonomous nature provides an opportunity for coordinated interaction amongst a network of systems, a practice we call Network Jamming. This paper outlines the characteristics of this networked performance practice and discusses the types of mediated musical relationships and ensemble configurations that can arise. We have developed and tested the jam2jam network jamming software over recent years. We describe this system, draw from our experiences with it, and use it to illustrate some characteristics of Network Jamming.
Resumo:
This paper explains, somewhat along a Simmelian line, that political theory may produce practical and universal theories like those developed in theoretical physics. The reasoning behind this paper is to show that the Element of Democracy Theory may be true by way of comparing it to Einstein’s Special Relativity – specifically concerning the parameters of symmetry, unification, simplicity, and utility. These parameters are what make a theory in physics as meeting them not only fits with current knowledge, but also produces paths towards testing (application). As the Element of Democracy Theory meets these same parameters, it could settle the debate concerning the definition of democracy. This will be shown firstly by discussing why no one has yet achieved a universal definition of democracy; secondly by explaining the parameters chosen (as in why these and not others confirm or scuttle theories); and thirdly by comparing how Special Relativity and the Element of Democracy match the parameters.
Resumo:
Modelling droplet movement on leaf surfaces is an important component in understanding how water, pesticide or nutrient is absorbed through the leaf surface. A simple mathematical model is proposed in this paper for generating a realistic, or natural looking trajectory of a water droplet traversing a virtual leaf surface. The virtual surface is comprised of a triangular mesh structure over which a hybrid Clough-Tocher seamed element interpolant is constructed from real-life scattered data captured by a laser scanner. The motion of the droplet is assumed to be affected by gravitational, frictional and surface resistance forces and the innovation of our approach is the use of thin-film theory to develop a stopping criterion for the droplet as it moves on the surface. The droplet model is verified and calibrated using experimental measurement; the results are promising and appear to capture reality quite well.
Resumo:
This thesis is about the derivation of the addition law on an arbitrary elliptic curve and efficiently adding points on this elliptic curve using the derived addition law. The outcomes of this research guarantee practical speedups in higher level operations which depend on point additions. In particular, the contributions immediately find applications in cryptology. Mastered by the 19th century mathematicians, the study of the theory of elliptic curves has been active for decades. Elliptic curves over finite fields made their way into public key cryptography in late 1980’s with independent proposals by Miller [Mil86] and Koblitz [Kob87]. Elliptic Curve Cryptography (ECC), following Miller’s and Koblitz’s proposals, employs the group of rational points on an elliptic curve in building discrete logarithm based public key cryptosystems. Starting from late 1990’s, the emergence of the ECC market has boosted the research in computational aspects of elliptic curves. This thesis falls into this same area of research where the main aim is to speed up the additions of rational points on an arbitrary elliptic curve (over a field of large characteristic). The outcomes of this work can be used to speed up applications which are based on elliptic curves, including cryptographic applications in ECC. The aforementioned goals of this thesis are achieved in five main steps. As the first step, this thesis brings together several algebraic tools in order to derive the unique group law of an elliptic curve. This step also includes an investigation of recent computer algebra packages relating to their capabilities. Although the group law is unique, its evaluation can be performed using abundant (in fact infinitely many) formulae. As the second step, this thesis progresses the finding of the best formulae for efficient addition of points. In the third step, the group law is stated explicitly by handling all possible summands. The fourth step presents the algorithms to be used for efficient point additions. In the fifth and final step, optimized software implementations of the proposed algorithms are presented in order to show that theoretical speedups of step four can be practically obtained. In each of the five steps, this thesis focuses on five forms of elliptic curves over finite fields of large characteristic. A list of these forms and their defining equations are given as follows: (a) Short Weierstrass form, y2 = x3 + ax + b, (b) Extended Jacobi quartic form, y2 = dx4 + 2ax2 + 1, (c) Twisted Hessian form, ax3 + y3 + 1 = dxy, (d) Twisted Edwards form, ax2 + y2 = 1 + dx2y2, (e) Twisted Jacobi intersection form, bs2 + c2 = 1, as2 + d2 = 1, These forms are the most promising candidates for efficient computations and thus considered in this work. Nevertheless, the methods employed in this thesis are capable of handling arbitrary elliptic curves. From a high level point of view, the following outcomes are achieved in this thesis. - Related literature results are brought together and further revisited. For most of the cases several missed formulae, algorithms, and efficient point representations are discovered. - Analogies are made among all studied forms. For instance, it is shown that two sets of affine addition formulae are sufficient to cover all possible affine inputs as long as the output is also an affine point in any of these forms. In the literature, many special cases, especially interactions with points at infinity were omitted from discussion. This thesis handles all of the possibilities. - Several new point doubling/addition formulae and algorithms are introduced, which are more efficient than the existing alternatives in the literature. Most notably, the speed of extended Jacobi quartic, twisted Edwards, and Jacobi intersection forms are improved. New unified addition formulae are proposed for short Weierstrass form. New coordinate systems are studied for the first time. - An optimized implementation is developed using a combination of generic x86-64 assembly instructions and the plain C language. The practical advantages of the proposed algorithms are supported by computer experiments. - All formulae, presented in the body of this thesis, are checked for correctness using computer algebra scripts together with details on register allocations.
Resumo:
Theory-of-Mind has been defined as the ability to explain and predict human behaviour by imputing mental states, such as attention, intention, desire, emotion, perception and belief, to the self and others (Astington & Barriault, 2001). Theory-of-Mind study began with Piaget and continued through a tradition of meta-cognitive research projects (Flavell, 2004). A study by Baron-Cohen, Leslie and Frith (1985) of Theory-of-Mind abilities in atypically developing children reported major difficulties experienced by children with autism spectrum disorder (ASD) in imputing mental states to others. Since then, a wide range of follow-up research has been conducted to confirm these results. Traditional Theory-of-Mind research on ASD has been based on an either-or assumption that Theory-of-Mind is something one either possesses or does not. However, this approach fails to take account of how the ASD population themselves experience Theory-of-Mind. This paper suggests an alternative approach, Theory-of-Mind continuum model, to understand the Theory-of-Mind experience of people with ASD. The Theory-of-Mind continuum model will be developed through a comparison of subjective and objective aspects of mind, and phenomenal and psychological concepts of mind. This paper will demonstrate the importance of balancing qualitative and quantitative research methods in investigating the minds of people with ASD. It will enrich our theoretical understanding of Theory-of-Mind, as well as contain methodological implications for further studies in Theory-of-Mind
Resumo:
Over recent years, Unmanned Air Vehicles or UAVs have become a powerful tool for reconnaissance and surveillance tasks. These vehicles are now available in a broad size and capability range and are intended to fly in regions where the presence of onboard human pilots is either too risky or unnecessary. This paper describes the formulation and application of a design framework that supports the complex task of multidisciplinary design optimisation of UAVs systems via evolutionary computation. The framework includes a Graphical User Interface (GUI), a robust Evolutionary Algorithm optimiser named HAPEA, several design modules, mesh generators and post-processing capabilities in an integrated platform. These population –based algorithms such as EAs are good for cases problems where the search space can be multi-modal, non-convex or discontinuous, with multiple local minima and with noise, and also problems where we look for multiple solutions via Game Theory, namely a Nash equilibrium point or a Pareto set of non-dominated solutions. The application of the methodology is illustrated on conceptual and detailed multi-criteria and multidisciplinary shape design problems. Results indicate the practicality and robustness of the framework to find optimal shapes and trade—offs between the disciplinary analyses and to produce a set of non dominated solutions of an optimal Pareto front to the designer.
Resumo:
Technology and Nursing Practice explains and critically engages with the practice implications of technology for nursing. It takes a broad view of technology, covering not only health informatics, but also 'tele-nursing' and the use of equipment in clinical practice.
Resumo:
Miller’s algorithm for computing pairings involves perform- ing multiplications between elements that belong to different finite fields. Namely, elements in the full extension field Fpk are multiplied by elements contained in proper subfields F pk/d , and by elements in the base field Fp . We show that significant speedups in pairing computations can be achieved by delaying these “mismatched” multiplications for an optimal number of iterations. Importantly, we show that our technique can be easily integrated into traditional pairing algorithms; implementers can exploit the computational savings herein by applying only minor changes to existing pairing code.
Resumo:
The popularity of social networking sites (SNSs) among adolescents has grown exponentially, with little accompanying research to understand the influences on adolescent engagement with this technology. The current study tested the validity of an extended theory of planned behaviour model (TPB), incorporating the additions of group norm and self-esteem influences, to predict frequent SNS use. Adolescents (N = 160) completed measures assessing the standard TPB constructs of attitude, subjective norm, perceived behavioural control (PBC), and intention, as well as group norm and self-esteem. One week later, participants reported their SNS use during the previous week. Support was found for the standard TPB variables of attitude and PBC, as well as group norm, in predicting intentions to use SNS frequently, with intention, in turn, predicting behaviour. These findings provide an understanding of the factors influencing frequent engagement in what is emerging as a primary tool for adolescent socialisation.
Resumo:
We have developed a new experimental method for interrogating statistical theories of music perception by implementing these theories as generative music algorithms. We call this method Generation in Context. This method differs from most experimental techniques in music perception in that it incorporates aesthetic judgments. Generation In Context is designed to measure percepts for which the musical context is suspected to play an important role. In particular the method is suitable for the study of perceptual parameters which are temporally dynamic. We outline a use of this approach to investigate David Temperley’s (2007) probabilistic melody model, and provide some provisional insights as to what is revealed about the model. We suggest that Temperley’s model could be improved by dynamically modulating the probability distributions according to the changing musical context.
Resumo:
Using information and communication technology devices in public urban places can help to create a personalised space. Looking at a mobile phone screen or listening to music on an MP3 player is a common practice avoiding direct contact with others e.g. whilst using public transport. However, such devices can also be utilised to explore how to build new meaningful connections with the urban space and the collocated people within. We present findings of work-in-progress on Capital Music, a mobile application enabling urban dwellers to listen to music songs as usual, but also allowing them to announce song titles and discover songs currently being listened to by other people in the vicinity. We study the ways that this tool can change or even enhance people’s experience of public urban spaces. Our first user study also found changes in choosing different songs. Anonymous social interactions based on users’ music selection are implemented in the first iteration of the prototype that we studied.
Resumo:
In this research I have examined how ePortfolios can be designed for Music postgraduate study through a practice led research enquiry. This process involved designing two Web 2.0 ePortfolio systems for a group of five post graduate music research students. The design process revolved around the application of an iterative methodology called Software Develop as Research (SoDaR) that seeks to simultaneously develop design and pedagogy. The approach to designing these ePortfolio systems applied four theoretical protocols to examine the use of digitised artefacts in ePortfolio systems to enable a dynamic and inclusive dialogue around representations of the students work. The research and design process involved an analysis of existing software and literature with a focus upon identifying the affordances of available Web 2.0 software and the applications of these ideas within 21st Century life. The five post graduate music students each posed different needs in relation to the management of digitised artefacts and the communication of their work amongst peers, supervisors and public display. An ePortfolio was developed for each of them that was flexible enough to address their needs within the university setting. However in this first SoDaR iteration data gathering phase I identified aspects of the university context that presented a negative case that impacted upon the design and usage of the ePortfolios and prevented uptake. Whilst the portfolio itself functioned effectively, the university policies and technical requirements prevented serious use. The negative case analysis of the case study found revealed that Access and Control and Implementation, Technical and Policy Constraints protocols where limiting user uptake. From the semistructured interviews carried out as part of this study participant feedback revealed that whilst the participants did not use the ePortfolio system I designed, each student was employing Web 2.0 social networking and storage processes in their lives and research. In the subsequent iterations I then designed a more ‘ideal’ system that could be applied outside of the University context that draws upon the employment of these resources. In conclusion I suggest recommendations about ePortfolio design that considers what the applications of the theoretical protocols reveal about creative arts settings. The transferability of these recommendations are of course dependent upon the reapplication of the theoretical protocols in a new context. To address the mobility of ePortfolio design between Institutions and wider settings I have also designed a prototype for a business card sized USB portal for the artists’ ePortfolio. This research project is not a static one; it stands as an evolving design for a Web 2.0 ePortfolio that seeks to refer to users needs, institutional and professional contexts and the development of software that can be incorporated within the design. What it potentially provides to creative artist is an opportunity to have a dialogue about art with artefacts of the artist products and processes in that discussion.