920 resultados para Composite materials. Magnetic markers. Non-destructive evaluation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O desenvolvimento de técnicas não invasivas e não destrutivas para a avaliação da composição e qualidade de carcaça em animais tem mobilizado consideráveis recursos em pesquisa. A ultra-sonografia aparece neste contexto como uma técnica viável, confiável e de custo aceitável para esta função. No presente trabalho foi avaliada a técnica de ultra-sonografia em tempo real como ferramenta para predição da área de olho-de-lombo (AOL) e espessura da camada de gordura subcutânea (ECG) a partir de imagens tomadas em animais vivos, quando comparadas com as medições na carcaça. Foram utilizados 115 bovinos jovens (30, ½ Angus x Nellore; 30, ½ Canchim x Nellore; 30, ½ Simental x Nellore, e 25 Nellores), com peso inicial médio de 329 kg e de dois tamanhos à maturidade (pequeno e grande), no sistema de produção do novilho superprecoce. As medidas de ultra-sonografia foram realizadas a cada 28 dias totalizando quatro medições até o final do confinamento. A precisão da predição aumentou em função da proximidade da data do abate, sendo máxima na quarta medida (R²= 0,68 para AOL e 0,82 para ECG). Houve efeito de grupo genético e de medida ultra-sonográfica para ECG. O tamanho corporal não teve efeito sobre nenhuma das características estudadas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Nickel nanoparticles into silica-carbon matrix composites were prepared by using the polymeric precursor method. The effects of the polyester type and the time of pyrolysis on the mesoporosity and nickel particle dispersion into non-aqueous amorphous silica-carbon matrix were investigated by thermogravimetric analysis, adsorption/desorption isotherms and TEM. A well-dispersed metallic phase could be only obtained by using ethylene glycol. Weightier polyesters affected the pyrolysis process due to a combination of more amounts of carbonaceous residues and delaying of pyrolysis process. The post-pyrolyzed composites were successfully cleaned at 200 degrees C for I h in oxygen atmosphere leading to an increase in the surface area and without the occurrence of carbon combustion or nickel nanoparticles oxidation. The matrix composites presented predominantly mesoporous with pore size well defined in 38 angstrom, mainly when tetraethylene glycol was used as polymerizing agent. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to evaluate the effect of ageing in distilled water on the hardness and compressive strength of a direct composite resin Z100, a feldspatic porcelain (Noritake) and three indirect composites (Artglass, Solidex and Targis). For the Vickers hardness tests, five disk-shaped specimens (2 x 4 mm) of each material were prepared according to the manufacturers' instructions. The hardness tests were conducted using a Vickers diamond indentor. Compressive strength measurements were recorded on cylindrical specimens with a diameter of 6 mm and a length of 12 mm. The compression tests were carried out with a constant cross-head speed of 0.5 mm min(-1) on a mechanical test machine. For each material, 10 specimens were tested after 7 days of dry storage at 37 +/- 1 degreesC and 10 specimens were tested after water storage at 37 +/- 1 degreesC for 180 days. Noritake porcelain specimens showed higher hardness values than the composites. Among the composite materials, Z100 promoted the highest VHN values, regardless of the ageing periods. The results showed that Solidex and Z100 had the highest compressive strength values. Ageing in water reduced the hardness for all composites, but had no long-term effect on the compressive strength.
Resumo:
This work presents a review of recent developments in phase-stepping real-time holographic interferometry with photorefractive sillenite crystals. Quantitative results are shown in micro-rotation, micro-displacement, and micro-deformation measurements, and in wave-optics and surface analysis as well. The phase stepping was carried out in a four-frame process and the resulting phase map was unwrapped by applying a sin/cos filter. The experimental results are in good agreement with the ones obtained through other means, showing the promising potentialities of phase-stepping real-time holographic interferometry for in situ visualisation, monitoring and analysis in non-destructive testing.
Resumo:
This paper discuss the qualitative use of electrostatic force microscopy to study the grain boundary active potential barrier present in dense SnO2-based polycrystalline semiconductors. The effect of heat treatment under rich- and poor-oxygen atmospheres was evaluated while especially considering the number of active barriers at grain boundary regions. The results show that the number of active barriers decrease after heat treatment in an oxygen-poor atmosphere and increase after heat treatment in oxygen-rich atmospheres. The observed effect was explained by considering the presence of oxidized transition metal elements segregated at grain boundary regions which leads to the p-type character of this region, in agreement with the atomic barrier formation mechanism in metal oxide varistor systems.
Resumo:
Eu3+ and Tm3+ doped lanthanum fluoride and lanthanum oxyfluoride are obtained from Eu3+, Tm3+ containing lanthanum fluoracetate solutions. The nature of the crystal phase obtained could be controlled by the temperature of heat treatment. Spectral characteristics of Eu3+ doped crystal phases were sufficiently different to allow utilization of Eu3+ as structural probes. Tm3+ emission at the technologically important spectral region of 1450nm could be observed for the fluoride and oxyfluoride crystal phases. The large bandwidth obtained (around 120nm) suggests potential applications in optical amplification. SiO2-LaF3-LaOF composite materials were also prepared. It is observed that for heat treatments above 800degreesC, fluorine loss, probably in the form of SiF4 hinder the observation of Tm3+ emission. Eu3+ spectroscopic characteristics clearly show the evolution of a fluoride like environment to an amorphous oxide one as the temperature of heat treatment increased. Thin films obtained by dip-coating on V-SiO2 substrates and treated at 300degreesC, 500degreesC and 800degreesC display guided modes in the visible and infrared regions. Optical characteristics (refractive index and films thickness) were obtained at 543.5, 632.8 and 1550nm. Attenuation as low as 1.8dB/cm was measured at 632.8nm. (C) 2004 Published by Elsevier B.V.
Resumo:
The main goal of the present study was to evaluate the effect of different setting accelerator agents on the developed microstructures of calcium phosphate cements (CPCs) by employing the impedance spectroscopy (IS) technique. Six compositions of CPCs were prepared from mixtures of commercial dicalcium phosphate anhydrous (DCPA) and synthesized tetracalcium phosphate (TTCP) as the solid phases. Two TTCP/DCPA molar ratios (1/1 and 1/2) and three liquid phases (aqueous solutions of Na(2)HPO(4), tartaric acid (TA) and oxalic acid (OA), 5% volume fraction) were employed. Initial (I) and final (F) setting times of the cement pastes were determined with Gillmore needles (ASTM standard C266-99). The hardened samples were characterized by X-ray powder diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and apparent density measurements. The IS technique was employed as a non-destructive tool to obtain information related to porosity, tortuosity and homogeneity of the cement microstructures. The formulation prepared from a TTCP/DCPA equimolar mixture and OA as the liquid phase presented the shortest I and F (12 and 20 min, respectively) in comparison to the other studied systems. XRD analyses revealed the formation of low-crystallinity hydroxyapatite (HA) (as the main phase) as well as the presence of little amounts of unreacted DCPA and TTCP after 24 h hardening in 100% relative humidity. This was related to the proposed mechanisms of dissolution of the reactants. The bands observed by FTIR allowed identifying the presence of calcium tartrate and calcium oxalate in the samples prepared from TA and OA, in addition to the characteristic bands of HA. High degree of entanglement of the formed crystals was observed by SEM in samples containing OA. SEM images were also correlated to the apparent densities of the hardened cements. Changes in porosity, tortuosity and microstructural homogeneity were determined in all samples, from IS results, when the TTCP/DCPA ratio was changed from 1/1 to 1/2. The cement formulated from an equimolar mixture of TTCP/DCPA and OA as the liquid phase presented setting times, degree of conversion to low-crystallinity HA and microstructural features suitable to be used as potential bone cement in clinical applications. The IS technique was shown to be a very sensitive and non-destructive tool to relate the paste composition to the developed microstructures. This approach could be very useful to develop calcium phosphate bone cements for specific clinical demands.
Resumo:
Piezoelectric composite, made from ferroelectric ceramic lead zirconate titanate (PZT) and vegetable based polyurethane (PU) polymer, was doped with a semiconductor filler, graphite. The resulting composite (PZT/C/PU) with 49/1/50- vol. % composition could be poled at lower field and shorter time due to the increased conductivity of the polymer phase following the introduction of graphite. The PZT/C/PU composite showed higher pyroelectric coefficient in comparison with the undoped PZT/PU composite with 50/50-vol. % composition. Also, the PZT/C/PU composite has shown the ability to detect both extensional and flexural modes of simulated acoustic emission (AE) at a distance up to 8.0 m from the source, thus indicating that it may be used for detection of structural damages.
Resumo:
The development of electrochemical potentiokinetic methods as applied to the testing of metals and alloys is followed from its early phases up to its latest advances relating to intergranular corrosion, SCC and pitting corrosion tests of stainless steels and special alloys and to the examination of their structure and properties. In assessing the susceptibility to intergranular and pitting corrosion by potentiokinetic polarization tests, the polarization curves which apply to the bulk of the alloy grains (the matrix) must be distinguished from those pertaining to grain boundaries. Cyclic polarization measurements such as the electrochemical potentiokinetic reactivation (EPR) test make it possible to derive the alloy's susceptibility to intergranular, pitting and crevice corrosion from characteristic potentials and other quantities determined in the 'double loop' test. EPR is rapid and responds to the combined effects of a number of factors that influence the properties of materials. The electrochemical p otentiokinetic tests are sensitive enough to detect structural changes in heat treated materials ranging far beyond the stainless steels alone, and can be used for non-destructive testing aimed at elucidating the properties and behavior of materials. © 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The magnetic and structural properties of sol-gel derived organic/inorganic nanocomposites doped with Fe(II), Fe(III), Nd(III) and Eu (III) ions are discussed. These hybrids consist of poly(oxyethylene)-based chains grafted onto siloxane nanodomains by urea cross-linkages. Small angle X-ray scattering data show the presence of spatial correlations of siloxane domains embedded in the polymer matrix. The magnetic properties of rare-earth doped samples are determined by single ion crystal-field-splitted levels (Eu3+ J=0; Nd3+ J=9/2) and the small thermal irreversibility is mainly associated to structural effects. Fe2+ -doped samples behave as simple paramagnet with residual antiferromagnetic interactions. Fe3+-doped hybrids are much more complex, with magnetic hysterisis, exchange anisotropy and thermal irreversibility at low temperatures. Néel temperatures increase up to 14K for the highest (∼5.5%) Fe3+ mass concentration.
Resumo:
In the present work, nano-sized magnetic nuclei of Co have been electrodeposited onto p-Si (111). The deposition follows a mechanism of progressive nucleation and growth controlled by diffusion. MFM studies showed that the transition between magnetic domain states is strongly dependent on the size and shape of the nuclei. A critical height h0 is defined below which the nuclei presented always a single-domain configuration. The limiting lower boundary for the single-domain state calculated from the theory is quantitatively coincident with the experimental results. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Flexible standing films of piezoelectric composite made of lead zirconate titanate (PZT) ceramic powder and Poly(3-hydroxybutyrate) (PHB) in powder form were obtained by mixing both polymers mechanically and pressed at 180°C. The piezoelectric coefficient d33 were investigated as function of PZT content, poling temperature and electric field. The highest value for d 33 coefficient was around 6pC/N for 50 vol% of PZT content in the composite. As PHB is a biodegradable polymer the composite has potential application as sensor minimizing the environmental problems.