935 resultados para Complete Genome Sequence


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cytochrome b-type NAD(P)H oxidoreductases are involved in many physiological processes, including iron uptake in yeast, the respiratory burst, and perhaps oxygen sensing in mammals. We have identified a cytosolic cytochrome b-type NAD(P)H oxidoreductase in mammals, a flavohemoprotein (b5+b5R) containing cytochrome b5 (b5) and b5 reductase (b5R) domains. A genetic approach, using blast searches against dbest for FAD-, NAD(P)H-binding sequences followed by reverse transcription–PCR, was used to clone the complete cDNA sequence of human b5+b5R from the hepatoma cell line Hep 3B. Compared with the classical single-domain b5 and b5R proteins localized on endoplasmic reticulum membrane, b5+b5R also has binding motifs for heme, FAD, and NAD(P)H prosthetic groups but no membrane anchor. The human b5+b5R transcript was expressed at similar levels in all tissues and cell lines that were tested. The two functional domains b5* and b5R* are linked by an approximately 100-aa-long hinge bearing no sequence homology to any known proteins. When human b5+b5R was expressed as c-myc adduct in COS-7 cells, confocal microscopy revealed a cytosolic localization at the perinuclear space. The recombinant b5+b5R protein can be reduced by NAD(P)H, generating spectrum typical of reduced cytochrome b with alpha, beta, and Soret peaks at 557, 527, and 425 nm, respectively. Human b5+b5R flavohemoprotein is a NAD(P)H oxidoreductase, demonstrated by superoxide production in the presence of air and excess NAD(P)H and by cytochrome c reduction in vitro. The properties of this protein make it a plausible candidate oxygen sensor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prophenoloxidase, a melanin-synthesizing enzyme, is considered to be an important arthropod immune protein. In mosquitoes, prophenoloxidase has been shown to be involved in refractory mechanisms against malaria parasites. In our study we used Anopheles gambiae, the most important human malaria vector, to characterize the first arthropod prophenoloxidase gene at the genomic level. The complete nucleotide sequence, including the immediate 5′ flanking sequence (−855 bp) of the prophenoloxidase 1 gene, was determined. The gene spans 10 kb and is composed of five exons and four introns coding for a 2.5-kb mRNA. In the 5′ flanking sequence, we found several putative regulatory motifs, two of which were identified as ecdysteroid regulatory elements. Electrophoretic mobility gel-shift assays and supershift assays demonstrated that the Aedes aegypti ecdysone receptor/Ultraspiracle nuclear receptor complex, and, seemingly, the endogenous Anopheles gambiae nuclear receptor complex, was able to bind one of the ecdysteroid response elements. Furthermore, 20-hydroxyecdysone stimulation was shown to up-regulate the transcription of the prophenoloxidase 1 gene in an A. gambiae cell line.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fish serum contains several specific binding proteins for insulin-like growth factors (IGFBPs). The structure and physiological function of these fish IGFBPs are unknown. Here we report the complete primary sequence of a zebrafish IGFBP deduced from cDNA clones isolated by library screening and rapid amplification of cDNA ends. The full-length 1,757-bp cDNA encodes a protein of 276 aa, which contains a putative 22-residue signal peptide and a 254-residue mature protein. The mature zebrafish IGFBP has a predicted molecular size of 28,440 Da and shows high sequence identity with human IGFBP-2 (52%). The sequence identities with other human IGFBPs are <37%. Chinese hamster ovary cells stably transfected with the zebrafish IGFBP-2 cDNA secreted a 31-kDa protein, which bound to IGF-I and IGF-II with high affinity, but did not bind to Des(1–3)IGF-I or insulin. Northern blot analyses revealed that the zebrafish IGFBP-2 transcript is a 1.8-kb band expressed in many embryonic and adult tissues. In adult zebrafish, IGFBP-2 mRNA levels were greatly reduced by growth hormone treatment but increased by prolonged fasting. When overexpressed or added to cultured zebrafish and mammalian cells, the zebrafish IGFBP-2 significantly inhibited IGF-I-stimulated cell proliferation and DNA synthesis. These results indicate that zebrafish IGFBP-2 is a negative growth regulator acting downstream in the growth hormone-IGF-I axis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low voltage-activated, or T-type, calcium currents are important regulators of neuronal and muscle excitability, secretion, and possibly cell growth and differentiation. The gene (or genes) coding for the pore-forming subunit of low voltage-activated channel proteins has not been unequivocally identified. We have used reverse transcription–PCR to identify partial clones from rat atrial myocytes that share high homology with a member of the E class of calcium channel genes. Antisense oligonucleotides targeting one of these partial clones (raE1) specifically block the increase in T-current density that normally results when atrial myocytes are treated with insulin-like growth factor 1 (IGF-1). Antisense oligonucleotides targeting portions of the neuronal rat α1E sequence, which are not part of the clones detected in atrial tissue, also block the IGF-1-induced increase in T-current, suggesting that the high homology to α1E seen in the partial clone may be present in the complete atrial sequence. The basal T-current expressed in these cells is also blocked by antisense oligonucleotides, which is consistent with the notion that IGF-1 up-regulates the same gene that encodes the basal current. These results support the hypothesis that a member of the E class of calcium channel genes encodes a low voltage-activated calcium channel in atrial myocytes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The molecular identity and function of the Drosophila melanogaster Y-linked fertility factors have long eluded researchers. Although the D. melanogaster genome sequence was recently completed, the fertility factors still were not identified, in part because of low cloning efficiency of heterochromatic Y sequences. Here we report a method for iterative blast searching to assemble heterochromatic genes from shotgun assemblies, and we successfully identify kl-2 and kl-3 as 1β- and γ-dynein heavy chains, respectively. Our conclusions are supported by formal genetics with X-Y translocation lines. Reverse transcription–PCR was successful in linking together unmapped sequence fragments from the whole-genome shotgun assembly, although some sequences were missing altogether from the shotgun effort and had to be generated de novo. We also found a previously undescribed Y gene, polycystine-related (PRY). The closest paralogs of kl-2, kl-3, and PRY (and also of kl-5) are autosomal and not X-linked, suggesting that the evolution of the Drosophila Y chromosome has been driven by an accumulation of male-related genes arising de novo from the autosomes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The complete DNA sequence of Pseudomonas aeruginosa provides an opportunity to apply functional genomics to a major human pathogen. A comparative genomics approach combined with genetic footprinting was used as a strategy to identify genes required for viability in P. aeruginosa. Use of a highly efficient in vivo mariner transposition system in P. aeruginosa facilitated the analysis of candidate genes of this class. We have developed a rapid and efficient allelic exchange system by using the I-SceI homing endonuclease in conjunction with in vitro mariner mutagenesis to generate mutants within targeted regions of the P. aeruginosa chromosome for genetic footprinting analyses. This technique for generating transposon insertion mutants should be widely applicable to other organisms that are not naturally transformable or may lack well developed in vivo transposition systems. We tested this system with three genes in P. aeruginosa that have putative essential homologs in Haemophilus influenzae. We show that one of three H. influenzae essential gene homologs is needed for growth in P. aeruginosa, validating the practicality of this comparative genomics strategy to identify essential genes in P. aeruginosa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the completion of the determination of its entire genome sequence, one of the next major targets of Bacillus subtilis genomics is to clarify the whole gene regulatory network. To this end, the results of systematic experiments should be compared with the rich source of individual experimental results accumulated so far. Thus, we constructed a database of the upstream regulatory information of B.subtilis (DBTBS). The current version was constructed by surveying 291 references and contains information on 90 binding factors and 403 promoters. For each promoter, all of its known cis-elements are listed according to their positions, while these cis-elements are aligned to illustrate their consensus sequence for each transcription factor. All probable transcription factors coded in the genome were classified with the Pfam motifs. Using this database, we compared the character of B.subtilis promoters with that of Escherichia coli promoters. Our database is accessible at http://elmo.ims.u-tokyo.ac.jp/dbtbs/.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A gene encoding a product with substantial similarity to ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) was identified in the preliminary genome sequence of the green sulfur bacterium Chlorobium tepidum. A highly similar gene was subsequently isolated and sequenced from Chlorobium limicola f.sp. thiosulfatophilum strain Tassajara. Analysis of these amino acid sequences indicated that they lacked several conserved RubisCO active site residues. The Chlorobium RubisCO-like proteins are most closely related to deduced sequences in Bacillus subtilis and Archaeoglobus fulgidus, which also lack some typical RubisCO active site residues. When the C. tepidum gene encoding the RubisCO-like protein was disrupted, the resulting mutant strain displayed a pleiotropic phenotype with defects in photopigment content, photoautotrophic growth and carbon fixation rates, and sulfur metabolism. Most important, the mutant strain showed substantially enhanced accumulation of two oxidative stress proteins. These results indicated that the C. tepidum RubisCO-like protein might be involved in oxidative stress responses and/or sulfur metabolism. This protein might be an evolutional link to bona fide RubisCO and could serve as an important tool to analyze how the RubisCO active site developed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

4-Hydroxyphenylpyruvate dioxygenase (4HPPD) catalyzes the formation of homogentisate (2,5-dihydroxyphenylacetate) from p-hydroxyphenylpyruvate and molecular oxygen. In plants this enzyme activity is involved in two distinct metabolic processes, the biosynthesis of prenylquinones and the catabolism of tyrosine. We report here the molecular and biochemical characterization of an Arabidopsis 4HPPD and the compartmentation of the recombinant protein in chlorophyllous tissues. We isolated a 1508-bp cDNA with one large open reading frame of 1338 bp. Southern analysis strongly suggested that this Arabidopsis 4HPPD is encoded by a single-copy gene. We investigated the biochemical characteristics of this 4HPPD by overproducing the recombinant protein in Escherichia coli JM105. The subcellular localization of the recombinant 4HPPD in chlorophyllous tissues was examined by overexpressing its complete coding sequence in transgenic tobacco (Nicotiana tabacum), using Agrobacterium tumefaciens transformation. We performed western analyses for the immunodetection of protein extracts from purified chloroplasts and total leaf extracts and for the immunocytochemistry on tissue sections. These analyses clearly revealed that 4HPPD was confined to the cytosol compartment, not targeted to the chloroplast. Western analyses confirmed the presence of a cytosolic form of 4HPPD in cultured green Arabidopsis cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A member of a Plasmodium receptor family for erythrocyte invasion was identified on chromosome 13 from the Plasmodium falciparum genome sequence of the Sanger Centre (Cambridge, U.K.). The protein (named BAEBL) has homology to EBA-175, a P. falciparum receptor that binds specifically to sialic acid and the peptide backbone of glycophorin A on erythrocytes. Both EBA-175 and BAEBL localize to the micronemes, organelles at the invasive ends of the parasites that contain other members of the family. Like EBA-175, the erythrocyte receptor for BAEBL is destroyed by neuraminidase and trypsin, indicating that the erythrocyte receptor is a sialoglycoprotein. Its specificity, however, differs from that of EBA-175 in that BAEBL can bind to erythrocytes that lack glycophorin A, the receptor for EBA-175. It has reduced binding to erythrocytes with the Gerbich mutation found in another erythrocyte, sialoglycoprotein (glycophorin C/D). The interest in BAEBL's reduced binding to Gerbich erythrocytes derives from the high frequency of the Gerbich phenotype in some regions of Papua New Guinea where P. falciparum is hyperendemic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We isolated two tomato (Lycopersicon esculentum) cDNA clones, tomPRO1 and tomPRO2, specifying Δ1-pyrroline-5-carboxylate synthetase (P5CS), the first enzyme of proline (Pro) biosynthesis. tomPRO1 is unusual because it resembles prokaryotic polycistronic operons (M.G. García-Ríos, T. Fujita, P.C. LaRosa, R.D. Locy, J.M. Clithero, R.A. Bressan, L.N. Csonka [1997] Proc Natl Acad Sci USA 94: 8249–8254), whereas tomPRO2 encodes a full-length P5CS. We analyzed the accumulation of Pro and the tomPRO1 and tomPRO2 messages in response to NaCl stress and developmental signals. Treatment with 200 mm NaCl resulted in a >60-fold increase in Pro levels in roots and leaves. However, there was a <3-fold increase in the accumulation of the tomPRO2 message and no detectable induction in the level of the tomPRO1 message in response to NaCl stress. Although pollen contained approximately 100-fold higher levels of Pro than other plant tissues, there was no detectable increase in the level of either message in pollen. We conclude that transcriptional regulation of these genes for P5CS is probably not important for the osmotic or pollen-specific regulation of Pro synthesis in tomato. Using restriction fragment-length polymorphism mapping, we determined the locations of tomPRO1 and tomPRO2 loci in the tomato nuclear genome. Sequence comparison suggested that tomPRO1 is similar to prokaryotic P5CS loci, whereas tomPRO2 is closely related to other eukaryotic P5CS genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structural proteins of the cytoplasmic intermediate filaments (IFs) arise in the nematode Caenorhabditis elegans from eight reported genes and an additional three genes now identified in the complete genome. With the use of double-stranded RNA interference (RNAi) for all 11 C. elegans genes encoding cytoplasmic IF proteins, we observe phenotypes for the five genes A1, A2, A3, B1, and C2. These range from embryonic lethality (B1) and embryonic/larval lethality (A3) to larval lethality (A1 and A2) and a mild dumpy phenotype of adults (C2). Phenotypes A2 and A3 involve displaced body muscles and paralysis. They probably arise by reduction of hypodermal IFs that participate in the transmission of force from the muscle cells to the cuticle. The B1 phenotype has multiple morphogenetic defects, and the A1 phenotype is arrested at the L1 stage. Thus, at least four IF genes are essential for C. elegans development. Their RNAi phenotypes are lethal defects due to silencing of single IF genes. In contrast to C. elegans, no IF genes have been identified in the complete Drosophila genome, posing the question of how Drosophila can compensate for the lack of these proteins, which are essential in mammals and C. elegans. We speculate that the lack of IF proteins in Drosophila can be viewed as cytoskeletal alteration in which, for instance, stable microtubules, often arranged as bundles, substitute for cytoplasmic IFs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Caenorhabditis elegans is an ideal organism for the study of the molecular basis of fundamental biological processes such as germ-line development, especially because of availability of the whole genome sequence and applicability of the RNA interference (RNAi) technique. To identify genes involved in germ-line development, we produced subtracted cDNA pools either enriched for or deprived of the cDNAs from germ-line tissues. We then performed differential hybridization on the high-density cDNA grid, on which about 7,600 nonoverlapping expressed sequence tag (EST) clones were spotted, to identify a set of genes specifically expressed in the germ line. One hundred and sixty-eight clones were then tested with the RNAi technique. Of these, 15 clones showed sterility with a variety of defects in germ-line development. Seven of them led to the production of unfertilized eggs, because of defects in spermatogenesis (4 clones), or defects in the oocytes (3 clones). The other 8 clones led to failure of oogenesis. These failures were caused by germ-line proliferation defect (Glp phenotype), meiotic arrest, and defects in sperm–oocyte switch (Mog phenotype) among others. These results demonstrate the efficacy of the screening strategy using the EST library combined with the RNAi technique in C. elegans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

All eukaryotic DNA transposons reported so far belong to a single category of elements transposed by the so-called “cut-and-paste” mechanism. Here, we report a previously unknown category of eukaryotic DNA transposons, Helitron, which transpose by rolling-circle replication. Autonomous Helitrons encode a 5′-to-3′ DNA helicase and nuclease/ligase similar to those encoded by known rolling-circle replicons. Helitron-like transposons have conservative 5′-TC and CTRR-3′ termini and do not have terminal inverted repeats. They contain 16- to 20-bp hairpins separated by 10–12 nucleotides from the 3′-end and transpose precisely between the 5′-A and T-3′, with no modifications of the AT target sites. Together with their multiple diverged nonautonomous descendants, Helitrons constitute ≈2% of both the Arabidopsis thaliana and Caenorhabditis elegans genomes and also colonize the Oriza sativa genome. Sequence conservation suggests that Helitrons continue to be transposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The whole genome sequence (1.83 Mbp) of Haemophilus influenzae strain Rd was searched to identify tandem oligonucleotide repeat sequences. Loss or gain of one or more nucleotide repeats through a recombination-independent slippage mechanism is known to mediate phase variation of surface molecules of pathogenic bacteria, including H. influenzae. This facilitates evasion of host defenses and adaptation to the varying microenvironments of the host. We reasoned that iterative nucleotides could identify novel genes relevant to microbe-host interactions. Our search of the Rd genome sequence identified 9 novel loci with multiple (range 6-36, mean 22) tandem tetranucleotide repeats. All were found to be located within putative open reading frames and included homologues of hemoglobin-binding proteins of Neisseria, a glycosyltransferase (IgtC gene product) of Neisseria, and an adhesin of Yersinia. These tetranucleotide repeat sequences were also shown to be present in two other epidemiologically different H. influenzae type b strains, although the number and distribution of repeats was different. Further characterization of the IgtC gene showed that it was involved in phenotypic switching of a lipopolysaccharide epitope and that this variable expression was associated with changes in the number of tetranucleotide repeats. Mutation of IgtC resulted in attenuated virulence of H. influenzae in an infant rat model of invasive infection. These data indicate the rapidity, economy, and completeness with which whole genome sequences can be used to investigate the biology of pathogenic bacteria.