583 resultados para Collaborative Design Learning
Resumo:
This study surveyed practicing classroom teacher’s perceptions of a proposed educational resource “Avatar Academy” designed to enhance students’, particularly young boys, motivation and general attitude towards learning. The Avatar Academy resource is an instructional guide for implementing a classroom reward system based on common game mechanics. The resource emphasizes the modification of current pedagogies to exploit the use of game design to engage boys. A survey of recent literature indicated an opportunity to study teachers’ perceptions of the possible applications of game design mechanics to support the enhancement of student motivation and learning in the classroom. As a result the Avatar Academy handbook and blog resource were developed to assist teachers with the integration and administration of a program designed to enhance student motivation, especially boys, using avatars and a point based reward system. The resources were initially distributed to several practicing teachers for their review, and their feedback formed the basis for revisions of the Avatar Academy resource. After implementing changes to the resource based on initial teacher feedback, an updated Avatar Academy was redistributed and teacher opinions and perceptions of the tool’s possible impacts on classroom learning were collected.
Resumo:
Since the knowledge-based economy has become a fashion over the last few decades, the concept of the professional learning community (PLC) has started being accepted by educational institutions and governments as an effective framework to improve teachers’ collective work and collaboration. The purpose of this research was to compare and contrast the implementations of PLCs between Beijing schools and Ontario schools from principals’ personal narratives. In order to discover the lessons and widen the scope to understand the PLC, this research applied qualitative design to collect the data from two principal participants in each location by semistructured interviews. Four themes emerged: (a) structure and technology, (b) identity and climate, (c) task and support, and (d) change and challenge. This research found that the root of the characteristics of the PLCs in Beijing and Ontario was the different existing teaching and learning systems as well as the test systems. Teaching Research Groups (TRGs) is one of the systems that help Chinese to organize routine time and input resources to improve teachers’ professional development. However, Canadian schools lack a similar system that guarantees the time and resources. Moreover, standardized test plays different roles in China and Canada. In China, standardized tests, such as the college entrance examination, are regarded as the important purpose of education, whereas Ontario principals saw the Education Quality and Accountability Office (EQAO) as a tool rather than a primary purpose. These two main differences influenced principals’ beliefs, attitudes, strategies, and practices. The implications based on this discovery provide new perspectives for principals, teachers, policy makers, and scholars to widen and deepen the research and practice of the PLC.
Resumo:
Mobile augmented reality applications are increasingly utilized as a medium for enhancing learning and engagement in history education. Although these digital devices facilitate learning through immersive and appealing experiences, their design should be driven by theories of learning and instruction. We provide an overview of an evidence-based approach to optimize the development of mobile augmented reality applications that teaches students about history. Our research aims to evaluate and model the impacts of design parameters towards learning and engagement. The research program is interdisciplinary in that we apply techniques derived from design-based experiments and educational data mining. We outline the methodological and analytical techniques as well as discuss the implications of the anticipated findings.
Resumo:
Mobile augmented reality applications are increasingly utilized as a medium for enhancing learning and engagement in history education. Although these digital devices facilitate learning through immersive and appealing experiences, their design should be driven by theories of learning and instruction. We provide an overview of an evidence-based approach to optimize the development of mobile augmented reality applications that teaches students about history. Our research aims to evaluate and model the impacts of design parameters towards learning and engagement. The research program is interdisciplinary in that we apply techniques derived from design-based experiments and educational data mining. We outline the methodological and analytical techniques as well as discuss the implications of the anticipated findings.
Resumo:
Presentation at the Ontario Library Association Super Conference, January 28-21, 2015, Toronto, ON.
Resumo:
Affiliation: Claudia Kleinman, Nicolas Rodrigue & Hervé Philippe : Département de biochimie, Faculté de médecine, Université de Montréal
Resumo:
Les changements sont faits de façon continue dans le code source des logiciels pour prendre en compte les besoins des clients et corriger les fautes. Les changements continus peuvent conduire aux défauts de code et de conception. Les défauts de conception sont des mauvaises solutions à des problèmes récurrents de conception ou d’implémentation, généralement dans le développement orienté objet. Au cours des activités de compréhension et de changement et en raison du temps d’accès au marché, du manque de compréhension, et de leur expérience, les développeurs ne peuvent pas toujours suivre les normes de conception et les techniques de codage comme les patrons de conception. Par conséquent, ils introduisent des défauts de conception dans leurs systèmes. Dans la littérature, plusieurs auteurs ont fait valoir que les défauts de conception rendent les systèmes orientés objet plus difficile à comprendre, plus sujets aux fautes, et plus difficiles à changer que les systèmes sans les défauts de conception. Pourtant, seulement quelques-uns de ces auteurs ont fait une étude empirique sur l’impact des défauts de conception sur la compréhension et aucun d’entre eux n’a étudié l’impact des défauts de conception sur l’effort des développeurs pour corriger les fautes. Dans cette thèse, nous proposons trois principales contributions. La première contribution est une étude empirique pour apporter des preuves de l’impact des défauts de conception sur la compréhension et le changement. Nous concevons et effectuons deux expériences avec 59 sujets, afin d’évaluer l’impact de la composition de deux occurrences de Blob ou deux occurrences de spaghetti code sur la performance des développeurs effectuant des tâches de compréhension et de changement. Nous mesurons la performance des développeurs en utilisant: (1) l’indice de charge de travail de la NASA pour leurs efforts, (2) le temps qu’ils ont passé dans l’accomplissement de leurs tâches, et (3) les pourcentages de bonnes réponses. Les résultats des deux expériences ont montré que deux occurrences de Blob ou de spaghetti code sont un obstacle significatif pour la performance des développeurs lors de tâches de compréhension et de changement. Les résultats obtenus justifient les recherches antérieures sur la spécification et la détection des défauts de conception. Les équipes de développement de logiciels doivent mettre en garde les développeurs contre le nombre élevé d’occurrences de défauts de conception et recommander des refactorisations à chaque étape du processus de développement pour supprimer ces défauts de conception quand c’est possible. Dans la deuxième contribution, nous étudions la relation entre les défauts de conception et les fautes. Nous étudions l’impact de la présence des défauts de conception sur l’effort nécessaire pour corriger les fautes. Nous mesurons l’effort pour corriger les fautes à l’aide de trois indicateurs: (1) la durée de la période de correction, (2) le nombre de champs et méthodes touchés par la correction des fautes et (3) l’entropie des corrections de fautes dans le code-source. Nous menons une étude empirique avec 12 défauts de conception détectés dans 54 versions de quatre systèmes: ArgoUML, Eclipse, Mylyn, et Rhino. Nos résultats ont montré que la durée de la période de correction est plus longue pour les fautes impliquant des classes avec des défauts de conception. En outre, la correction des fautes dans les classes avec des défauts de conception fait changer plus de fichiers, plus les champs et des méthodes. Nous avons également observé que, après la correction d’une faute, le nombre d’occurrences de défauts de conception dans les classes impliquées dans la correction de la faute diminue. Comprendre l’impact des défauts de conception sur l’effort des développeurs pour corriger les fautes est important afin d’aider les équipes de développement pour mieux évaluer et prévoir l’impact de leurs décisions de conception et donc canaliser leurs efforts pour améliorer la qualité de leurs systèmes. Les équipes de développement doivent contrôler et supprimer les défauts de conception de leurs systèmes car ils sont susceptibles d’augmenter les efforts de changement. La troisième contribution concerne la détection des défauts de conception. Pendant les activités de maintenance, il est important de disposer d’un outil capable de détecter les défauts de conception de façon incrémentale et itérative. Ce processus de détection incrémentale et itérative pourrait réduire les coûts, les efforts et les ressources en permettant aux praticiens d’identifier et de prendre en compte les occurrences de défauts de conception comme ils les trouvent lors de la compréhension et des changements. Les chercheurs ont proposé des approches pour détecter les occurrences de défauts de conception, mais ces approches ont actuellement quatre limites: (1) elles nécessitent une connaissance approfondie des défauts de conception, (2) elles ont une précision et un rappel limités, (3) elles ne sont pas itératives et incrémentales et (4) elles ne peuvent pas être appliquées sur des sous-ensembles de systèmes. Pour surmonter ces limitations, nous introduisons SMURF, une nouvelle approche pour détecter les défauts de conception, basé sur une technique d’apprentissage automatique — machines à vecteur de support — et prenant en compte les retours des praticiens. Grâce à une étude empirique portant sur trois systèmes et quatre défauts de conception, nous avons montré que la précision et le rappel de SMURF sont supérieurs à ceux de DETEX et BDTEX lors de la détection des occurrences de défauts de conception. Nous avons également montré que SMURF peut être appliqué à la fois dans les configurations intra-système et inter-système. Enfin, nous avons montré que la précision et le rappel de SMURF sont améliorés quand on prend en compte les retours des praticiens.
Resumo:
L’innovation pédagogique pour elle-même s’avère parfois discutable, mais elle se justifie quand les enseignants se heurtent aux difficultés d’apprentissage de leurs étudiants. En particulier, certaines notions de physique sont réputées difficiles à appréhender par les étudiants, comme c’est le cas pour l’effet photoélectrique qui n’est pas souvent compris par les étudiants au niveau collégial. Cette recherche tente de déterminer si, dans le cadre d’un cours de physique, la simulation de l’effet photoélectrique et l’utilisation des dispositifs mobiles et en situation de collaboration favorisent une évolution des conceptions des étudiants au sujet de la lumière. Nous avons ainsi procédé à l’élaboration d’un scénario d’apprentissage collaboratif intégrant une simulation de l’effet photoélectrique sur un ordinateur de poche. La conception du scénario a d’abord été influencée par notre vision socioconstructiviste de l’apprentissage. Nous avons effectué deux études préliminaires afin de compléter notre scénario d’apprentissage et valider la plateforme MobileSim et l’interface du simulateur, que nous avons utilisées dans notre expérimentation : la première avec des ordinateurs de bureau et la seconde avec des ordinateurs de poche. Nous avons fait suivre à deux groupes d’étudiants deux cours différents, l’un portant sur une approche traditionnelle d’enseignement, l’autre basé sur le scénario d’apprentissage collaboratif élaboré. Nous leur avons fait passer un test évaluant l’évolution conceptuelle sur la nature de la lumière et sur le phénomène de l’effet photoélectrique et concepts connexes, à deux reprises : la première avant que les étudiants ne s’investissent dans le cours et la seconde après la réalisation des expérimentations. Nos résultats aux prétest et post-test sont complétés par des entrevues individuelles semi-dirigées avec tous les étudiants, par des enregistrements vidéo et par des traces récupérées des fichiers logs ou sur papier. Les étudiants du groupe expérimental ont obtenu de très bons résultats au post-test par rapport à ceux du groupe contrôle. Nous avons enregistré un gain moyen d’apprentissage qualifié de niveau modéré selon Hake (1998). Les résultats des entrevues ont permis de repérer quelques difficultés conceptuelles d’apprentissage chez les étudiants. L’analyse des données recueillies des enregistrements des séquences vidéo, des questionnaires et des traces récupérées nous a permis de mieux comprendre le processus d’apprentissage collaboratif et nous a dévoilé que le nombre et la durée des interactions entre les étudiants sont fortement corrélés avec le gain d’apprentissage. Ce projet de recherche est d’abord une réussite sur le plan de la conception d’un scénario d’apprentissage relatif à un phénomène aussi complexe que l’effet photoélectrique, tout en respectant de nombreux critères (collaboration, simulation, dispositifs mobiles) qui nous paraissaient extrêmement utopiques de réunir dans une situation d’apprentissage en classe. Ce scénario pourra être adapté pour l’apprentissage d’autres notions de la physique et pourra être considéré pour la conception des environnements collaboratifs d’apprentissage mobile innovants, centrés sur les besoins des apprenants et intégrant les technologies au bon moment et pour la bonne activité.
Resumo:
This is a Named Entity Based Question Answering System for Malayalam Language. Although a vast amount of information is available today in digital form, no effective information access mechanism exists to provide humans with convenient information access. Information Retrieval and Question Answering systems are the two mechanisms available now for information access. Information systems typically return a long list of documents in response to a user’s query which are to be skimmed by the user to determine whether they contain an answer. But a Question Answering System allows the user to state his/her information need as a natural language question and receives most appropriate answer in a word or a sentence or a paragraph. This system is based on Named Entity Tagging and Question Classification. Document tagging extracts useful information from the documents which will be used in finding the answer to the question. Question Classification extracts useful information from the question to determine the type of the question and the way in which the question is to be answered. Various Machine Learning methods are used to tag the documents. Rule-Based Approach is used for Question Classification. Malayalam belongs to the Dravidian family of languages and is one of the four major languages of this family. It is one of the 22 Scheduled Languages of India with official language status in the state of Kerala. It is spoken by 40 million people. Malayalam is a morphologically rich agglutinative language and relatively of free word order. Also Malayalam has a productive morphology that allows the creation of complex words which are often highly ambiguous. Document tagging tools such as Parts-of-Speech Tagger, Phrase Chunker, Named Entity Tagger, and Compound Word Splitter are developed as a part of this research work. No such tools were available for Malayalam language. Finite State Transducer, High Order Conditional Random Field, Artificial Immunity System Principles, and Support Vector Machines are the techniques used for the design of these document preprocessing tools. This research work describes how the Named Entity is used to represent the documents. Single sentence questions are used to test the system. Overall Precision and Recall obtained are 88.5% and 85.9% respectively. This work can be extended in several directions. The coverage of non-factoid questions can be increased and also it can be extended to include open domain applications. Reference Resolution and Word Sense Disambiguation techniques are suggested as the future enhancements
Resumo:
Learning Disability (LD) is a neurological condition that affects a child’s brain and impairs his ability to carry out one or many specific tasks. LD affects about 15 % of children enrolled in schools. The prediction of LD is a vital and intricate job. The aim of this paper is to design an effective and powerful tool, using the two intelligent methods viz., Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System, for measuring the percentage of LD that affected in school-age children. In this study, we are proposing some soft computing methods in data preprocessing for improving the accuracy of the tool as well as the classifier. The data preprocessing is performed through Principal Component Analysis for attribute reduction and closest fit algorithm is used for imputing missing values. The main idea in developing the LD prediction tool is not only to predict the LD present in children but also to measure its percentage along with its class like low or minor or major. The system is implemented in Mathworks Software MatLab 7.10. The results obtained from this study have illustrated that the designed prediction system or tool is capable of measuring the LD effectively
Resumo:
This paper re-addresses the issue of a lacking genuine design research paradigm. It tries to sketch an operational model of such a paradigm, based upon a generic design process model, which is derived from basic notions of evolution and learning in different domains of knowing (and turns out to be not very different from existing ones). It does not abandon the scientific paradigm but concludes that the latter has to be embedded into / subordinated under a design paradigm.
Resumo:
Land use is a crucial link between human activities and the natural environment and one of the main driving forces of global environmental change. Large parts of the terrestrial land surface are used for agriculture, forestry, settlements and infrastructure. Given the importance of land use, it is essential to understand the multitude of influential factors and resulting land use patterns. An essential methodology to study and quantify such interactions is provided by the adoption of land-use models. By the application of land-use models, it is possible to analyze the complex structure of linkages and feedbacks and to also determine the relevance of driving forces. Modeling land use and land use changes has a long-term tradition. In particular on the regional scale, a variety of models for different regions and research questions has been created. Modeling capabilities grow with steady advances in computer technology, which on the one hand are driven by increasing computing power on the other hand by new methods in software development, e.g. object- and component-oriented architectures. In this thesis, SITE (Simulation of Terrestrial Environments), a novel framework for integrated regional sland-use modeling, will be introduced and discussed. Particular features of SITE are the notably extended capability to integrate models and the strict separation of application and implementation. These features enable efficient development, test and usage of integrated land-use models. On its system side, SITE provides generic data structures (grid, grid cells, attributes etc.) and takes over the responsibility for their administration. By means of a scripting language (Python) that has been extended by language features specific for land-use modeling, these data structures can be utilized and manipulated by modeling applications. The scripting language interpreter is embedded in SITE. The integration of sub models can be achieved via the scripting language or by usage of a generic interface provided by SITE. Furthermore, functionalities important for land-use modeling like model calibration, model tests and analysis support of simulation results have been integrated into the generic framework. During the implementation of SITE, specific emphasis was laid on expandability, maintainability and usability. Along with the modeling framework a land use model for the analysis of the stability of tropical rainforest margins was developed in the context of the collaborative research project STORMA (SFB 552). In a research area in Central Sulawesi, Indonesia, socio-environmental impacts of land-use changes were examined. SITE was used to simulate land-use dynamics in the historical period of 1981 to 2002. Analogous to that, a scenario that did not consider migration in the population dynamics, was analyzed. For the calculation of crop yields and trace gas emissions, the DAYCENT agro-ecosystem model was integrated. In this case study, it could be shown that land-use changes in the Indonesian research area could mainly be characterized by the expansion of agricultural areas at the expense of natural forest. For this reason, the situation had to be interpreted as unsustainable even though increased agricultural use implied economic improvements and higher farmers' incomes. Due to the importance of model calibration, it was explicitly addressed in the SITE architecture through the introduction of a specific component. The calibration functionality can be used by all SITE applications and enables largely automated model calibration. Calibration in SITE is understood as a process that finds an optimal or at least adequate solution for a set of arbitrarily selectable model parameters with respect to an objective function. In SITE, an objective function typically is a map comparison algorithm capable of comparing a simulation result to a reference map. Several map optimization and map comparison methodologies are available and can be combined. The STORMA land-use model was calibrated using a genetic algorithm for optimization and the figure of merit map comparison measure as objective function. The time period for the calibration ranged from 1981 to 2002. For this period, respective reference land-use maps were compiled. It could be shown, that an efficient automated model calibration with SITE is possible. Nevertheless, the selection of the calibration parameters required detailed knowledge about the underlying land-use model and cannot be automated. In another case study decreases in crop yields and resulting losses in income from coffee cultivation were analyzed and quantified under the assumption of four different deforestation scenarios. For this task, an empirical model, describing the dependence of bee pollination and resulting coffee fruit set from the distance to the closest natural forest, was integrated. Land-use simulations showed, that depending on the magnitude and location of ongoing forest conversion, pollination services are expected to decline continuously. This results in a reduction of coffee yields of up to 18% and a loss of net revenues per hectare of up to 14%. However, the study also showed that ecological and economic values can be preserved if patches of natural vegetation are conservated in the agricultural landscape. -----------------------------------------------------------------------
Resumo:
Die Diskussion in den Planungswissenschaften beschreibt den Paradigmenwechsel vom so genannten DEAD-Model (Decide-Announce-Defend) zum Tripple-D-Model (Dialogue-Decide-Deliver) und beschäftigt sich intensiv mit dem Thema Governance. Komplexe Planungsaufgaben brauchen eine Vielfalt an Lösungsideen unterschiedlicher gesellschaftlicher Gruppen. Planung verfolgt u. a. die Umsetzung der Ziele einer nachhaltigen Entwicklung, die die Einbeziehung der Öffentlichkeit (Zivilgesellschaft, Unternehmen und Bürger) verlangt. Darüber hinaus wird eine Erweiterung der Perspektive über Verfahren und Steuerungsformen hinaus auf Akteure und Prozesse gefordert. Räumliche Entwicklungen sollen stärker im Zusammenhang mit Entscheidungsfindungsprozesse untersucht werden. Die Dissertation ergänzt eine wirkungsorientierte Perspektive, die Wirkungen, sowohl räumliche als auch soziale, in den Mittelpunkt der Betrachtung stellt. Sie stützt sich auf Beobachtungen, dass klassisches Projektmanagement für erfolgreiche Planungsprozesse nicht ausreicht, sondern zusätzlich Prozessmanagement braucht. Mit der Weiterentwicklung der partizipativen Planung, die zusätzlich in den Kontext gesellschaftlicher Lernprozesse und zukunftsfähiger Veränderungen gesellschaftlicher Bedingungen gestellt wird, ergänzt die Dissertation planungswissenschaftliche Theorien. Aus einem fachübergreifenden Blickwinkel wird die räumliche Planung in die Reihe von Management- und Organisationswissenschaften eingeordnet. Ausgehend von der Frage, welche räumlichen und sozialen Wirkungen durch Beteiligungsprozesse unter welchen Bedingungen erzielt werden, wurden Fallstudien aus der Wasserwirtschaft und ihre Prozessbiografien umfassend evaluiert. Als Evaluierungsmethode wurde ein von der EU-Kommission empfohlener Evaluierungsrahmen gewählt, der sowohl den Prozess selbst, seine Rahmenbedingungen und Durchführung, als auch Wirkungen analysiert und bewertet. Auf der Grundlage der Ergebnisse und theoretischer Erkenntnisse, vorrangig aus der Evaluationsforschung, wird ein umfassender Beteiligungsansatz konzipiert. Dabei handelt es sich um ein offenes Gerüst, in das sich bewährte und innovative Elemente strategisch gezielt integrieren lassen. Die Struktur verbindet verschiedene Beteiligungswerkzeuge unterschiedlicher Intensitäten und für unterschiedliche Zielgruppen zu einem Gesamtkonzept, mit dem Ziel, möglichst die gewünschten Wirkungen zu erreichen. Wesentlich an dem Ansatz ist, dass bereits das Prozessdesign unter Mitwirkung von Projektträgern, Beratern und Schlüsselakteuren erfolgt. Die partizipative Beteiligungsplanung bedeutet somit Klärung der Vorgehensweise und gleichzeitig Bewusstseins- und Kompetenzerweiterung der verantwortlichen Akteure. Im Ausblick werden künftige Forschungsaufgaben im Bereich der Mitwirkung in der räumlichen Planung formuliert und Handlungsmöglichkeiten aufgezeigt, um Partizipation als Teil planerischer „Alltagskultur“ weiterzuentwickeln. Dies erfolgt vor dem Hintergrund der Bedeutung von Partizipation und Bildung als Umsetzungsstrategie von Ideen der Landschaftsentwicklung und Nachhaltigkeit.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.