959 resultados para Co-Management
Resumo:
Biofuels are both a promising solution to global warming mitigation and a potential contributor to the problem. Several life cycle assessments of bioethanol have been conducted to address these questions. We performed a synthesis of the available data on Brazilian ethanol production focusing on greenhouse gas (GHG) emissions and carbon (C) sinks in the agricultural and industrial phases. Emissions of carbon dioxide (CO(2)) from fossil fuels, methane (CH(4)) and nitrous oxide (N(2)O) from sources commonly included in C footprints, such as fossil fuel usage, biomass burning, nitrogen fertilizer application, liming and litter decomposition were accounted for. In addition, black carbon (BC) emissions from burning biomass and soil C sequestration were included in the balance. Most of the annual emissions per hectare are in the agricultural phase, both in the burned system (2209 out of a total of 2398 kg C(eq)), and in the unburned system (559 out of 748 kg C(eq)). Although nitrogen fertilizer emissions are large, 111 kg C(eq) ha-1 yr-1, the largest single source of emissions is biomass burning in the manual harvest system, with a large amount of both GHG (196 kg C(eq) ha-1 yr-1). and BC (1536 kg C(eq) ha-1 yr-1). Besides avoiding emissions from biomass burning, harvesting sugarcane mechanically without burning tends to increase soil C stocks, providing a C sink of 1500 kg C ha-1 yr-1 in the 30 cm layer. The data show a C output: input ratio of 1.4 for ethanol produced under the conventionally burned and manual harvest compared with 6.5 for the mechanized harvest without burning, signifying the importance of conservation agricultural systems in bioethanol feedstock production.
Resumo:
The Cerrado and Amazon regions of Brazil are probably the largest agricultural frontier of the world, and Could be a sink or source for C depending on the net effect of land use change and subsequent management on soil organic C pools. We evaluated the effects of agricultural management systems on soil organic C (SOC) stocks in the Brazilian states of Rondonia and Mato Grosso, and derived regional specific factors for soil C stock change associated with different management systems. We used 50 observations (data points) in this study, including 42 dealing with annual cropping practices and 8 dealing with perennial cropping, and analyzed the data in linear mixed-effect models. No tillage (NT) systems in Cerrado areas increased SOC Storage by 1.08 +/- 0.06 relative to SOC stocks under native conditions, while SOC storage increased by a modest factor of 1.01 +/- 0.17 in Cerradao and Amazon Forest conditions. Full tillage (FT) had negative effect on SOC storage relative to NT, decreasing SOC stocks by a factor of 0.94 +/- 0.04. but did not significantly reduce SOC stocks relative to native levels when adopted in the Cerrado region. Perennial cropping had a minimal impact on SOC stocks, estimated at a factor Value of 0.98 +/- 0.14, suggesting these systems maintain about 98% of the SOC stock found under native vegetation. The results Suggest that NT adoption may be increasing SOC with land use change from native vegetation to cropland management in the Cerrado region of Brazil. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The introduction of crop management practices after conversion of Amazon Cerrado into cropland influences soil C stocks and has direct and indirect consequences on greenhouse gases (GHG) emissions. The aim of this study was to quantify soil C sequestration, through the evaluation of the changes in C stocks, as well as the GHG fluxes (N(2)O and CH(4)) during the process of conversion of Cerrado into agricultural land in the southwestern Amazon region, comparing no-tillage (NT) and conventional tillage (CT) systems. We collected samples from soils and made gas flux measurements in July 2004 (the dry season) and in January 2005 (the wet season) at six areas: Cerrado, CT cultivated with rice for 1 year (1CT) and 2 years (2CT), and NT cultivated with soybean for 1 year (1NT), 2 years (2NT) and 3 years (3NT), in each case after a 2-year period of rice under CT. Soil samples were analyzed in both seasons for total organic C and bulk density. The soil C stocks, corrected for a mass of soil equivalent to the 0-30-cm layer under Cerrado, indicated that soils under NT had generally higher C storage compared to native Cerrado and CT soils. The annual C accumulation rate in the conversion of rice under CT into soybean under NT was 0.38 Mg ha(-1) year(-1). Although CO(2) emissions were not used in the C sequestration estimates to avoid double counting, we did include the fluxes of this gas in our discussion. In the wet season, CO(2) emissions were twice as high as in the dry season and the highest N(2)O emissions occurred under the NT system. There were no CH(4) emissions to the atmosphere (negative fluxes) and there were no significant seasonal variations. When N(2)O and CH(4) emissions in C-equivalent were subtracted (assuming that the measurements made on 4 days were representative of the whole year), the soil C sequestration rate of the conversion of rice under CT into soybean under NT was 0.23 Mg ha(-1) year(-1). Although there were positive soil C sequestration rates, our results do not present data regarding the full C balance in soil management changes in the Amazon Cerrado. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Grassland management affects soil organic carbon (SOC) content and a variety of management options have been proposed to sequester carbon. However, studies conducted in Brazilian pastures have shown divergent responses for the SOC depending on management practices. Our objective was to evaluate the effects of management on SOC stocks in grasslands of the Brazilian states of Rondonia and Mato Grosso, and to derive region-specific factors for soil C stock change associated with different management conditions. Compared to SOC stocks in native vegetation, degraded grassland management decreased SOC by a factor of 0.91 +/- 0.14, nominal grassland management reduced SOC stock for Oxisols by a relatively small factor of 0.99 +/- 0.08, whereas, SOC storage increased by a factor of 1.24 +/- 0.07 with nominal management for other soil types. Improved grassland management on Oxisols increased SOC storage by 1.19 +/- 0.07, relative to native stocks, but there were insufficient data to evaluate the impact of improved grassland management for other soil types. Using these results, we also evaluated the potential for grassland management to sequester or emit C to the atmosphere, and found that degraded grassland management decreased stocks by about 0.27-0.28 Mg C ha(-1) yr(-1); nominal management on Oxisols decreased C at a rate of 0.03 Mg C ha(-1) yr(-1), while nominal management on others soil types and improved management on Oxisols increased stocks by 0.72 Mg C ha(-1) yr(-1) and 0.61 Mg C ha(-1) yr(-1), respectively. Therefore, when well managed or improved, grasslands in Rondonia and Mato Grosso states have the potential to sequester C. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A recent estimate of CO(2) outgassing from Amazonian wetlands suggests that an order of magnitude more CO(2) leaves rivers through gas exchange with the atmosphere than is exported to the ocean as organic plus inorganic carbon. However, the contribution of smaller rivers is still poorly understood, mainly because of limitations in mapping their spatial extent. Considering that the largest extension of the Amazon River network is composed of small rivers, the authors` objective was to elucidate their role in air-water CO(2) exchange by developing a geographic information system ( GIS)- based model to calculate the surface area covered by rivers with channels less than 100 m wide, combined with estimated CO(2) outgassing rates at the Ji-Parana River basin, in the western Amazon. Estimated CO(2) outgassing was the main carbon export pathway for this river basin, totaling 289 Gg C yr(-1), about 2.4 times the amount of carbon exported as dissolved inorganic carbon ( 121 Gg C yr(-1)) and 1.6 times the dissolved organic carbon export ( 185 Gg C yr(-1)). The relationships established here between drainage area and channel width provide a new model for determining small river surface area, allowing regional extrapolations of air - water gas exchange. Applying this model to the entire Amazon River network of channels less than 100 m wide ( third to fifth order), the authors calculate that the surface area of small rivers is 0.3 +/- 0.05 million km(2), and it is potentially evading to the atmosphere 170 +/- 42 Tg C yr(-1) as CO(2). Therefore, these ecosystems play an important role in the regional carbon balance.
Resumo:
A method for simultaneous determination of Cr, Fe, Co, Ni, Cu, Zn, As e Pb in liquid chemical waste using Energy Dispersive X-Ray Fluorescence (EDXRF) technique was evaluated. A small sample amount (200 mu L) was dried on a 6.35 mu m thickness Mylar film at 60 degrees C and the analyses were carried out using an EDXRF spectrometer operated with an X-ray Mo tube (Zr filter) at 30 kV/20 mA. The acquisition time was 300 s and the Ga element was utilized as internal standard at 25 mg/L for quantitative analysis. The method trueness was assessed by spiking and the detection limit for those elements ranged from 0.39 to 1.7 mg/L. This method is notable because it assists the choice of the more appropriated waste treatment procedure, in which inter elemental interference is a matter of importance. In addition, this inexpensive method allows a non-destructive determination of the elements from (19)K to (92)U simultaneously.
Resumo:
There is more to sustainable forest management than reduced impact logging. Partnerships between multiple actors are needed in order to create the institutional context for good forest governance and sustainable forest management and stimulate the necessary local community involvement. The idea behind this is that the parties would be able to achieve more jointly than on their own by combining assets, knowledge, skills and political power of actors at different levels of scale. This article aims to demonstrate by example the nature and variety of forest-related partnerships in Brazilian Amazonia. Based on the lessons learned from these cases and the authors` experience, the principal characteristics of successful partnerships are described, with a focus on political and socioeconomic aspects. These characteristics include fairly negotiated partnership objectives, the active involvement of the public sector as well as impartial brokers, equitable and cost-effective institutional arrangements, sufficient and equitably shared benefits for all the parties involved, addressing socioeconomic drawbacks, and taking measures to maintain sustainable exploitation levels. The authors argue that, in addition to product-oriented partnerships which focus on sustainable forest management, there is also a need for politically oriented partnerships based on civil society coalitions. The watchdog function of these politically oriented partnerships, their awareness-raising campaigns regarding detrimental policies and practices, and advocacy for good forest governance are essential for the creation of the appropriate legal and political framework for sustainable forest management. (C) 2008 Elsevier B.V. All rights reserved.
Impact of cancer-related symptom synergisms on health-related quality of life and performance status
Resumo:
To identify the impact of multiple symptoms and their co-occurrence on health-related quality of life (HRQOL) dimensions and performance status (PS), 115 outpatients with cancer, who were not receiving active cancer treatment and were recruited from, a university hospital in Sao Paulo, Brazil completed the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-C30, the Beck Depression Inventory, and the Brief Pain Inventory. Karnofsky Performance Status scores also were completed. Application of TwoStep Cluster analysis resulted in two distinct patient subgroups based on 113 patient experiences with pain, depression, fatigue, insomnia, constipation, lack of appetite, dyspnea, nausea, vomiting, and diarrhea. One group had multiple and severe symptom subgroup and another had Less symptoms and with lower severity. Multiple and severe symptoms had worse PS, role functioning, and physical, emotional, cognitive, social, and overall HRQOL. Multiple and severe symptom subgroup was also six times as likely as lower severity to have poor role functioning;five times more likely to have poor emotional;four times more likely to have poor PS, physical, and overall HRQOL, and three times as likely to have poor cognitive and social HRQOL, independent of gender, age, level of education, and economic condition. Classification and Regression Tree analyses were undertaken to identify which co-occurring symptoms would best determine reduction in HRQOL and PS. Pain and fatigue were identified as indicators of reduction on physical HRQOL and PS. Fatigue and insomnia were associated with reduction in cognitive; depression and pain in social; and fatigue and constipation in role functioning. Only depression was associated with reduction in overall HRQOL. These data demonstrate that there is a synergic effect among distinct cancer symptoms that result in reduction in HRQOL dimensions and PS.
Resumo:
Objective: To provide a detailed description of the nasopharyngeal intubation (NPI) technique and photographs, which should be helpful for those who may need to perform it for treating the airway obstruction in Robin sequence. Design: To describe and illustrate the NPI technique and the necessary considerations for its application. Setting: Hospital de Reabilitacao de Anomalias Craniofacial of University of Sao Paulo, Brazil. Result: The NPI procedure involves the use of a whitish, Portex, number 3.0 or 3.5, silicone tube, introduced 8 cm deep into the infant`s nostril and fixed with Micropore tape. The tube is to be removed at least twice a day for proper hygiene (with running water, detergent, and swabs) and should be changed every 7 days. This procedure is taught to the children`s parents or caretakers by the nurse during hospitalization. Conclusion: The technique is so simple that it can be performed by the parents themselves, allowing continuation of the treatment at home.
Resumo:
The synthetic hydrous niobium oxide has been used for phosphate removal from the aqueous solutions. The kinetic data correspond very well to the pseudo second-order equation The phosphate removal tended. to increase with a decrease of pH. The equilibrium data describe very well the Langmuir isotherm. The peak appearing at 1050 cm(-1) in IR spectra after adsorption was attributed to the bending vibration of adsorbed phosphate. The adsorption capacities are high, and increased with increasing temperature. The evaluated Delta G degrees and Delta H degrees indicate the spontaneous and endothermic nature of the reactions. The adsorptions occur with increase in entropy (Delta S positive) value suggest increase in randomness at the solid-liquid interface during the adsorption. A phosphate desorbability of approximately 60% was observed with water at pH 12, which indicated a relatively strong bonding between the adsorbed phosphate and the sorptive sites on the surface of the adsorbent. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
CoB, CO(2)B, CoSi, Co(2)Si and CO(5)Si(2)B phases can be formed during heat-treatment of amorphous co-Si-B soft magnetic materials. Thus, it is important to determine their magnetic behavior as a function of applied field and temperature. In this study, polycrystalline single-phase samples of the above phases were produced via arc melting and heat-treatment under argon. The single-phase nature of the samples was confirmed via X-ray diffraction experiments. AC and DC magnetization measurements showed that Co(2)Si and CO(5)Si(2)B phases are paramagnetic. Minor amounts of either Co(2)Si or CoSi(2) in the CoSi-phase sample suggested a paramagnetic behavior of the CoSi-phase, however, it should be diamagnetic as shown in the literature. The diamagnetic behavior of the CoB phase was also confirmed. The paramagnetic behavior of CO(5)Si(2)B is for the first time reported. The magnetization results of the phase CO(2)B have a ferromagnetic signature already verified on previous NMR studies. A detailed set of magnetization measurements of this phase showed a change of the easy magnetization axis starting at 70K, with a temperature interval of about 13K at a very small field of 1 mT. As the strength of the field is increased the temperature interval is enlarged. The strength of field at which the magnetization saturates increases almost linearly as the temperature is increased above 70K. The room temperature total magnetostriction of the CO(2)B phase was determined to be 8 ppm at a field of 1T. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A set of stacked ribbon samples with the compositions Fe(85)Ga(15), Fe(78)Ni(7)Ga(15) and Fe(78)Co(7)Ga(15) were prepared. XRD on these ribbons show that the binary Fe(85)Ga(15) ribbon exhibits the disordered A2 structure where as the addition of Co and Ni leads to the appearance of an additional ordered DO(3) structure. A comparison of the ratio of the XRD-line intensities gave strong evidence of a (100) texture perpendicular to the ribbon surface. The optical studied microstructure supports these results because it shows a columnar grain growth parallel to the solidification direction-which is parallel to ribbon thickness. The highest magnetostriction was found for Fe(78)Ni(7)Ga(15) (370 ppm), while the Fe(78)Co(7)Ga(15) a smaller magnetostriction of 270 ppm was found. The enhancement of the magnetostriction is attributed to the (100) texture in these ribbons. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The influence of granulometry and organic treatment of a Brazilian montmorillonite (MMT) clay on the synthesis and properties of poly(styrene-co-n-butyl acrylate)/layered silicate nanocomposites was studied. Hybrid latexes of poly(styrene-co-butyl acrylate)/MMT were synthesized via miniemulsion polymerization using either sodium or organically modified MMT. Five clay granulometries ranging from clay particles smaller than 75 mu m to colloidal size were selected. The size of the clay particles was evaluated by Specific surface area measurements (BET). Cetyl trimethyl ammonium chloride was used as an organic modifier to enhance the clay compatibility with the monomer phase before polymerization and to improve the clav distribution and dispersion within the polymeric matrix after polymerization. The sodium and organically modified natural clays as well as the composites were characterized by X-ray diffraction analysis. The latexes were characterized by dynamic light scattering. The mechanical, thermal, and rheological properties of the composites obtained were characterized by dynamical-mechanical analysis, thermogravimetry, and small amplitude oscillatory, shear tests, respectively. The results showed that smaller the size of the organically modified MMT, the higher the degree of exfoliation of nanoplatelets. Hybrid latexes in presence of Na-MMT resulted in materials with intercalated structures. (C) 2009 Wiley, Periodicals, Inc. J Appl Polym Sci 112: 1949-1958, 2009
Resumo:
Smooth copper coatings containing well-distributed silicon nitride particles were obtained by co-electrodeposition in acidic sulfate bath. The cathodic current density did not show significant influence on incorporated particle volume fraction, whereas the increase of particle concentration in the bath led to its decrease. The increase of stirring rate increased the amount of embedded particles. The microhardness of the composite layers was higher than that of pure copper deposits obtained under the same conditions due to dispersion-strengthening and copper matrix grain refinement and increased with the increase of incorporated particle volume fraction. The microhardness of composites also increased with the increase of current density due to copper matrix grain refining. The composite coatings presented higher strength but lower ductility than pure copper layers. Pure copper and composite coatings showed the same corrosion resistance in 0.5 wt.% H(2)SO(4) solution at room temperature. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Surface heat treatment in glasses and ceramics, using CO(2) lasers, has attracted the attention of several researchers around the world due to its impact in technological applications, such as lab-on-a-chip devices, diffraction gratings and microlenses. Microlens fabrication on a glass surface has been studied mainly due to its importance in optical devices (fiber coupling, CCD signal enhancement, etc). The goal of this work is to present a systematic study of the conditions for microlens fabrications, along with the viability of using microlens arrays, recorded on the glass surface, as bidimensional codes for product identification. This would allow the production of codes without any residues (like the fine powder generated by laser ablation) and resistance to an aggressive environment, such as sterilization processes. The microlens arrays were fabricated using a continuous wave CO(2) laser, focused on the surface of flat commercial soda-lime silicate glass substrates. The fabrication conditions were studied based on laser power, heating time and microlens profiles. A He-Ne laser was used as a light source in a qualitative experiment to test the viability of using the microlenses as bidimensional codes.