998 resultados para Clinical biochemistry
Resumo:
The basic morphology of the skeleton is determined genetically, but its final mass and architecture are modulated by adaptive mechanisms sensitive to mechanical factors. When subjected to loading, the ability of bones to resist fracture depends on their mass, material properties, geometry and tissue quality. The contribution of altered bone geometry to fracture risk is unappreciated by clinical assessment using absorptiometry because it fails to distinguish geometry and density. For example, for the same bone area and density, small increases in the diaphyseal radius effect a disproportionate influence on torsional strength of bone. Mechanical factors are clinically relevant because of their ability to influence growth, modeling and remodeling activities that can maximize, or maintain, the determinants of fracture resistance. Mechanical loads, greater than those habitually encountered by the skeleton, effect adaptations in cortical and cancellous bone, reduce the rate of bone turnover, and activate new bone formation on cortical and trabecular surfaces. In doing so, they increase bone strength by beneficial adaptations in the geometric dimensions and material properties of the tissue. There is no direct evidence to demonstrate anti-fracture efficacy for mechanical loading, but the geometric alterations engendered undoubtedly increase the structural properties of bone as an organ, increasing the resistance to fracture. Like all interventions, issues of safety also arise. Physical activities involving high strain rates, heavy lifting or impact loading may be detrimental to the joints, leading to osteoarthritis; may stimulate fatigue damage leading with some to stress fractures; or may interact pharmaceutical interventions to increase the rate of microdamage within cortical or trabecular bone.
Resumo:
Breast cancer is the most common form of cancer among women and the identification of markers to discriminate tumorigenic from normal cells, as well as the different stages of this pathology, is of critical importance. Two-dimensional electrophoresis has been used before for studying breast cancer, but the progressive completion of human genomic sequencing and the introduction of mass spectrometry, combined with advanced bioinformatics for protein identification, have considerably increased the possibilities for characterizing new markers and therapeutic targets. Breast cancer proteomics has already identified markers of potential clinical interest (such as the molecular chaperone 14-3-3 sigma) and technological innovations such as large scale and high throughput analysis are now driving the field. Methods in functional proteomics have also been developed to study the intracellular signaling pathways that underlie the development of breast cancer. As illustrated with fibroblast growth factor-2, a mitogen and motogen factor for breast cancer cells, proteomics is a powerful approach to identify signaling proteins and to decipher the complex signaling circuitry involved in tumor growth. Together with genomics, proteomics is well on the way to molecularly characterizing the different types of breast tumor, and thus defining new therapeutic targets for future treatment.
Resumo:
To examine whether nucleolar organizer regions detected by argyrophilia (Ag-NOR counts) can be used as a prognostic indicator in phyllodes tumors of the breast, and to compare its usefulness with that of DNA flow cytometric analysis, 28 cases of breast phyllodes tumors (including 15 benign, two borderline and 11 malignant tumors) were subjected to Ag-NOR staining and counting as well as DNA flow cytometric analysis. S-phase fraction and DNA ploidy analysis showed useful trends for improving outcome predictions in malignant phyllodes tumors. However, high Ag-NOR counts were significant in predicting survival status (P = 0.013) and reached near statistical significance in predicting survival times (P = 0.07). In predicting survival status, results for Ag-NOR counts were significantly better than those for ploidy analysis (P = 0.02) and S-phase fraction (P < 0.01). Only S-phase fraction was significantly predictive of survival times (P = 0.025). It is concluded that Ag-NOR counts and DNA flow cytometric analysis, easily performed using paraffin sections, give information that can improve predictions made by histopathological classification. Ag-NOR counts are significant in predicting survival in the presence of histopathological features of malignancy.
Resumo:
Using differential display-polymerase chain reaction, we identified a novel gene sequence, designated solid tumor-associated gene 1 (STAG1), that is upregulated in renal cell carcinoma (RCC). The full-length cDNA (4839 bp) encompassed the recently reported androgen-regulated prostatic cDNA PMEPA1 and so we refer to this gene as STAG1/PMEPA1, Two STAG1/PMEPA1 mRNA transcripts of approximately 2.7 an 5 kb, with identical coding regions but variant 3' untranslated regions, were predominantly expressed in normal prostate tissue and at lower levels in the ovary. The expression of this gene was upregulated in 87% of RCC samples and also was upregulated in stomach and rectal adenocarcinomas. In contrast, STAG1/PMEPA1 expression was barely detectable in leukemia and lymphoma samples, Analysis of expressed sequence tag databases showed that STAG1/PMEPA1 also was expressed in pancreatic, endometrial, and prostatic adenocarcinomas. The STAG1/PMEPA1 cDNA encodes a 287-amino-acid protein containing a putative transmembrane domain and motifs that suggest that it may bind src homology 3- and tryptophan tryptophan domain-containing proteins. This protein shows 67% identity to the protein encoded by the chromosome 18 open reading frame 1 gene. Translation of STAG1/PMEPA1 mRNA in vitro showed two products of 36 and 39 kDa, respectively, suggesting that translation may initiate at more than one site. Comparison to genomic clones showed that STAG1/PMEPA1 was located on chromosome 20q13 between microsatellite markers D20S183 and D20S173 and spanned four exons and three introns. The upregulation of this gene in several solid tumors indicated that it may play an important role in tumorigenesis. (C) 2001 Wiley-Liss, Inc.
Resumo:
Background and Aim: The published literature on alcoholic liver disease (ALD) in Australia lacks a large clinical series out of private practice as distinct from hospital-based hepatology referral units. This series describes the presentation and clinical features of ALD in a consecutive series out of metropolitan private practice in Australia. Methods: A retrospective descriptive study by case-note review found 297 cases of ALD at a Brisbane practice over 20 years. The main outcome measures were: clinical features and stage at presentation, reasons for referral, and the predictive value of aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio. Results: Most patients (57.9%) had no symptoms of liver disease and 29 patients (9.8%) had neither symptoms nor signs. Cirrhosis was found in 41% of patients and hepatitis-fibrosis was found in 26% of patients. The male to female (M: F) ratio was 4.7:1. The AST/ALT ratio was not reliably predictive of ALD stage. The average reported daily alcohol intake was 131 g. Females drank less on average and presented a more vigorous clinical picture. Conclusions: This series presents the spectrum of ALD in a metropolitan Australian private practice. Many patients are asymptomatic on presentation. All heavy drinkers should be targeted for early investigation without waiting for volunteered symptoms or abnormal physical signs. The male to female ratio in ALD is higher than hitherto reported. The AST/ALT ratio is not generally applicable in the staging of ALD. The differences from hospital series data suggest the demography and epidemiology of ALD in Australia are incomplete, and further study is warranted. (C) 2001 Blackwell Science Asia Pty Ltd.
Resumo:
Dendritic cells (DC) are now recognised as a unique leukocyte type, consisting of two or more subsets. The origins and functional inter-relationships of these cells are the subject of intense basic scientific investigation. They play important roles in initiating and directing immune responses, defending the host from pathogens and maintaining self tolerance. Fundamental studies are defining new molecules and mechanisms associated with DC function. The first methods for counting these rare blood cell populations are already providing interesting new clinical data. Indeed, abnormal DC function may contribute to deficiencies in the immune response against malignancies. Phase I trial data suggests that DC-based cancer vaccination protocols may contribute an important new biological approach to cancer therapy. Manipulation of DC to facilitate allogeneic transplantation and even to manage autoimmune disease are likely developments.