976 resultados para Climate for Workplace Discrimination
Resumo:
Action representations can interact with object recognition processes. For example, so-called mirror neurons respond both when performing an action and when seeing or hearing such actions. Investigations of auditory object processing have largely focused on categorical discrimination, which begins within the initial 100 ms post-stimulus onset and subsequently engages distinct cortical networks. Whether action representations themselves contribute to auditory object recognition and the precise kinds of actions recruiting the auditory-visual mirror neuron system remain poorly understood. We applied electrical neuroimaging analyses to auditory evoked potentials (AEPs) in response to sounds of man-made objects that were further subdivided between sounds conveying a socio-functional context and typically cuing a responsive action by the listener (e.g. a ringing telephone) and those that are not linked to such a context and do not typically elicit responsive actions (e.g. notes on a piano). This distinction was validated psychophysically by a separate cohort of listeners. Beginning approximately 300 ms, responses to such context-related sounds significantly differed from context-free sounds both in the strength and topography of the electric field. This latency is >200 ms subsequent to general categorical discrimination. Additionally, such topographic differences indicate that sounds of different action sub-types engage distinct configurations of intracranial generators. Statistical analysis of source estimations identified differential activity within premotor and inferior (pre)frontal regions (Brodmann's areas (BA) 6, BA8, and BA45/46/47) in response to sounds of actions typically cuing a responsive action. We discuss our results in terms of a spatio-temporal model of auditory object processing and the interplay between semantic and action representations.
Resumo:
Today, perhaps without their realization, Iowans are factoring climate change into their lives and activities. Current farming practices and flood mitigation efforts, for example, are reflecting warmer winters, longer growing seasons, warmer nights, higher dew-point temperatures, increased humidity, greater annual stream flows, and more frequent severe precipitation events (Fig. 1) than were prevalent during the past 50 years. Some of the effects of these changes (such as longer growing season) may be positive, while others (particularly the tendency for greater precipitation events that lead to flooding) are negative. Climate change embodies all of these results and many more in a complex manner. The Iowa legislature has been proactive in seeking advice about climate change and its impacts on our state. In 2007, Governor Culver and the Iowa General Assembly enacted Senate File 485 and House File 2571 to create the Iowa Climate Change Advisory Council (ICCAC). ICCAC members reported an emissions inventory and a forecast for Iowa’s greenhouse gases (GHGs), policy options for reducing Iowa’s GHG, and two scenarios charting GHG reductions of 50% and 90% by 2050 from a baseline of 2005. Following issuance of the final report in December 2008, the General Assembly enacted a new bill in 2009 (Sec. 27, Section 473.7, Code 2009 amended) that set in motion a review of climate change impacts and policies in Iowa. This report is the result of that 2009 bill. It continues the dialogue between Iowa’s stakeholders, scientific community, and the state legislature that was begun with these earlier reports.
Resumo:
The Formica rufa group (red wood ants) currently includes six species. Nevertheless, during previous work based on molecular markers, we showed the existence of one population morphologically identified as F. lugubris, but genetically different from all other analysed populations of this species. This population could represent a cryptic species within the Swiss National Park and has been provisionally named Formica lugubris-A2. To verify our hypothesis, we conducted a behavioural test based on the ability of ants to recognize pupae of their own species when compared to those of another species. The three red wood ant species present in the Swiss National Park (F. lugubris, F. paralugubris and F. aquilonia) and the F. lugubris-A2 population were used in our study. Results indicate that the F. lugubris-A2 population differs from other F. lugubris and from all other species in the behaviour of its workers and in the way its pupae are discriminated by other species. This is in accordance with the genetic data and strengthens our hypothesis on the existence of a new cryptic red wood ant species within the Swiss National Park.
Resumo:
[spa] En lo que concierne al cambio climático, los pronósticos de cercanos picos de combustible fósiles parecen buenas noticias pues la mayoría de las emisiones proceden de la quema de combustibles fósiles. Sin embargo, esto podría resultar engañoso de confirmarse las enormes estimaciones de reservas de carbón pues puede divisarse un intercambio de combustible fósiles con baja concentración de carbono (petróleo y gas) por otros de mayor (carbón). Ciñéndonos a esta hipótesis desarrollamos escenarios donde tan pronto el petróleo y el gas natural alcanzan su cénit la extracción de carbón crece lo necesario para compensar el descenso de los primeros. Estimamos las emisiones que se deriva de tales supuestos y las comparamos con el peor escenario del IPCC. Si bien dicho escenario parece improbable concluimos que los picos de petróleo y gas no son suficientes para evitar peligrosas sendas de gases de efecto invernadero. Las concentraciones de CO2 halladas superan con creces las 450 ppm sin signos de remisión.
Resumo:
Many studies have investigated the impacts that climate change could potentially have on the distribution of plant species, but few have attempted to constrain projections through plant dispersal limitations. Instead, most studies published so far have been using the simplification of considering dispersal as either unlimited or null. However, depending on a species' dispersal capacity, landscape fragmentation, and the rate of climatic change, these assumptions can lead to serious over- or underestimation of a species' future distribution. To quantify the discrepancies between unlimited, realistic, and no dispersal scenarios, we carried out projections of future distribution over the 21st century for 287 mountain plant species in a study area of the Western Swiss Alps. For each species, simulations were run for four dispersal scenarios (unlimited dispersal, no dispersal, realistic dispersal and realistic dispersal with long-distance dispersal events) and under four climate change scenarios. Although simulations accounting for realistic dispersal limitations did significantly differ from those considering dispersal as unlimited or null in terms of projected future distribution, using the unlimited dispersal simplification nevertheless provided good approximations for species extinctions under more moderate climate change scenarios. Overall, simulations accounting for dispersal limitations produced, for our mountainous study area, results that were significantly closer to unlimited dispersal than to no dispersal. Finally, analyzing the temporal pattern of species extinctions over the entire 21st century showed that, due to the possibility of a large number of species shifting their distribution to higher elevation, important species extinctions for our study area might not occur before the 2080-2100 time periods.
Resumo:
Debris flows and related landslide processes occur in many regions all over Norway and pose a significant hazard to inhabited areas. Within the framework of the development of a national debris flows susceptibility map, we are working on a modeling approach suitable for Norway with a nationwide coverage. The discrimination of source areas is based on an index approach, which includes topographic parameters and hydrological settings. For the runout modeling, we use the Flow-R model (IGAR, University of Lausanne), which is based on combined probabilistic and energetic algorithms for the assessment of the spreading of the flow and maximum runout distances. First results for different test areas have shown that runout distances can be modeled reliably. For the selection of source areas, however, additional factors have to be considered, such as the lithological and quaternary geological setting, in order to accommodate the strong variation in debris flow activity in the different geological, geomorphological and climate regions of Norway.
Resumo:
Substantial investment in climate change research has led to dire predictions of the impacts and risks to biodiversity. The Intergovernmental Panel on Climate Change fourth assessment report(1) cites 28,586 studies demonstrating significant biological changes in terrestrial systems(2). Already high extinction rates, driven primarily by habitat loss, are predicted to increase under climate change(3-6). Yet there is little specific advice or precedent in the literature to guide climate adaptation investment for conserving biodiversity within realistic economic constraints(7). Here we present a systematic ecological and economic analysis of a climate adaptation problem in one of the world's most species-rich and threatened ecosystems: the South African fynbos. We discover a counterintuitive optimal investment strategy that switches twice between options as the available adaptation budget increases. We demonstrate that optimal investment is nonlinearly dependent on available resources, making the choice of how much to invest as important as determining where to invest and what actions to take. Our study emphasizes the importance of a sound analytical framework for prioritizing adaptation investments(4). Integrating ecological predictions in an economic decision framework will help support complex choices between adaptation options under severe uncertainty. Our prioritization method can be applied at any scale to minimize species loss and to evaluate the robustness of decisions to uncertainty about key assumptions.
Resumo:
Selostus: Porkkanan kasvu ja biomassan jakautuminen varastojuuren ja verson välillä pohjoisissa oloissa
Resumo:
OBJECTIVES: To assess consequences of physical violence at work and identify their predictors. METHODS: Among the patients in a medicolegal consultation from 2007 to 2010, the subsample of workplace violence victims (n = 185) was identified and contacted again in average 30 months after the assault. Eighty-six victims (47 %) participated. Ordinal logistic regression analyses assessed the effect of 9 potential risk factors on physical, psychological and work consequences summarized in a severity score (0-9). RESULTS: Severity score distribution was as follows: 4+: 14 %; 1-3: 42 %; and 0: 44 %. Initial psychological distress resulting from the violence was a strong predictor (p < 0.001) of the severity score both on work and long-term psychological consequences. Gender and age did not reach significant levels in multivariable analyses even though female victims had overall more severe consequences. Unexpectedly, only among workers whose jobs implied high awareness of the risk of violence, first-time violence was associated with long-term psychological and physical consequences (p = 0.004). Among the factors assessed at follow-up, perceived lack of employers' support or absence of employer was associated with higher values on the severity score. The seven other assessed factors (initial physical injuries; previous experience of violence; preexisting health problems; working alone; internal violence; lack of support from colleagues; and lack of support from family or friends) were not significantly associated with the severity score. CONCLUSIONS: Being a victim of workplace violence can result in long-term consequences on health and employment, their severity increases with the seriousness of initial psychological distress. Support from the employer can help prevent negative outcomes.
Resumo:
Abstract. Drought leads to a loss of longitudinal and lateral hydrologic connectivity, which causes direct or indirect changes in stream ecosystem properties. Changes in macrohabitat availability from a rifflepool sequence to isolated pools are among the most conspicuous consequences of connectivity loss. Macroinvertebrate assemblages were compared among 3 distinct stream macrohabitats (riffles [R], pools connected to riffles [Pc], disconnected pools [Pd]) of 19 Mediterranean-climate sites in northern California to examine the influence of loss of habitat resulting from drought disturbance. At the time of sampling, 10 sites were perennial and included R and Pc macrohabitats, whereas 9 sites were intermittent and included only Pd macrohabitats. Taxa richness was more variable in Pd, and taxa richness was significantly lower in Pd than in Pc but not R. These results suggested a decline in richness between Pc and Pd that might be associated with loss of connectivity. Lower Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness relative to Odonata, Coleoptera, and Heteroptera (OCH) richness was observed for Pd than R and Pc macrohabitats. Family composition was more similar between R and Pc than between R or Pc and Pd macrohabitats. This similarity may be associated with greater connectivity between R and Pc macrohabitats. Correspondence analysis indicated that macroinvertebrate composition changed along a gradient from R to Pc and Pd that was related to a perennialintermittent gradient across sites. High variability among macroinvertebrate assemblages in Pd could have been related to variability in the duration of intermittency. In cluster analysis, macroinvertebrate assemblages were grouped by macrohabitat first and then by site, suggesting that the macrohabitat filter had a greater influence on macroinvertebrate assemblages than did local site characteristics. Few taxa were found exclusively in Pc, and this macrohabitat shared numerous taxa with R and Pd, indicating that Pc may act as a bridge between R and Pd during drought. Drought is regarded as a ramp disturbance, but our results suggest that the response of macroinvertebrate assemblages to the loss of hydrological connectivity among macrohabitats is gradual, at least in Mediterranean-climate streams where drying is gradual. However, the changes may be more dramatic in arid and semiarid streams or in Mediterranean-climate streams if drying is rapid.
Resumo:
Annual Report for the Iowa Civil Rights Commission
Resumo:
Selostus: Kevätvehnän ja nurminadan fotosynteesi ja Rubisco-kinetiikka simuloidun ilmastonmuutoksen eli kohotetun hiilidioksidipitoisuuden ja kohotetun lämpötilan oloissa