901 resultados para Classification image technique
Benthic terrain modeler sea-bed classification for OFOS stations during POLARSTERN cruise ANT-XXIX/3
Resumo:
The data acquired by Remote Sensing systems allow obtaining thematic maps of the earth's surface, by means of the registered image classification. This implies the identification and categorization of all pixels into land cover classes. Traditionally, methods based on statistical parameters have been widely used, although they show some disadvantages. Nevertheless, some authors indicate that those methods based on artificial intelligence, may be a good alternative. Thus, fuzzy classifiers, which are based on Fuzzy Logic, include additional information in the classification process through based-rule systems. In this work, we propose the use of a genetic algorithm (GA) to select the optimal and minimum set of fuzzy rules to classify remotely sensed images. Input information of GA has been obtained through the training space determined by two uncorrelated spectral bands (2D scatter diagrams), which has been irregularly divided by five linguistic terms defined in each band. The proposed methodology has been applied to Landsat-TM images and it has showed that this set of rules provides a higher accuracy level in the classification process
Resumo:
Managing large medical image collections is an increasingly demanding important issue in many hospitals and other medical settings. A huge amount of this information is daily generated, which requires robust and agile systems. In this paper we present a distributed multi-agent system capable of managing very large medical image datasets. In this approach, agents extract low-level information from images and store them in a data structure implemented in a relational database. The data structure can also store semantic information related to images and particular regions. A distinctive aspect of our work is that a single image can be divided so that the resultant sub-images can be stored and managed separately by different agents to improve performance in data accessing and processing. The system also offers the possibility of applying some region-based operations and filters on images, facilitating image classification. These operations can be performed directly on data structures in the database.
Resumo:
Once admitted the advantages of object-based classification compared to pixel-based classification; the need of simple and affordable methods to define and characterize objects to be classified, appears. This paper presents a new methodology for the identification and characterization of objects at different scales, through the integration of spectral information provided by the multispectral image, and textural information from the corresponding panchromatic image. In this way, it has defined a set of objects that yields a simplified representation of the information contained in the two source images. These objects can be characterized by different attributes that allow discriminating between different spectral&textural patterns. This methodology facilitates information processing, from a conceptual and computational point of view. Thus the vectors of attributes defined can be used directly as training pattern input for certain classifiers, as for example artificial neural networks. Growing Cell Structures have been used to classify the merged information.
Resumo:
The image by Computed Tomography is a non-invasive alternative for observing soil structures, mainly pore space. The pore space correspond in soil data to empty or free space in the sense that no material is present there but only fluids, the fluid transport depend of pore spaces in soil, for this reason is important identify the regions that correspond to pore zones. In this paper we present a methodology in order to detect pore space and solid soil based on the synergy of the image processing, pattern recognition and artificial intelligence. The mathematical morphology is an image processing technique used for the purpose of image enhancement. In order to find pixels groups with a similar gray level intensity, or more or less homogeneous groups, a novel image sub-segmentation based on a Possibilistic Fuzzy c-Means (PFCM) clustering algorithm was used. The Artificial Neural Networks (ANNs) are very efficient for demanding large scale and generic pattern recognition applications for this reason finally a classifier based on artificial neural network is applied in order to classify soil images in two classes, pore space and solid soil respectively.
Resumo:
Synthetic Aperture Radar (SAR) images a target region reflectivity function in the multi-dimensional spatial domain of range and cross-range with a finer azimuth resolution than the one provided by any on-board real antenna. Conventional SAR techniques assume a single reflection of transmitted waveforms from targets. Nevertheless, new uses of Unmanned Aerial Vehicles (UAVs) for civilian-security applications force SAR systems to work in much more complex scenes such as urban environments. Consequently, multiple-bounce returns are additionally superposed to direct-scatter echoes. They are known as ghost images, since they obscure true target image and lead to poor resolution. All this may involve a significant problem in applications related to surveillance and security. In this work, an innovative multipath mitigation technique is presented in which Time Reversal (TR) concept is applied to SAR images when the target is concealed in clutter, leading to TR-SAR technique. This way, the effect of multipath is considerably reduced ?or even removed?, recovering the lost resolution due to multipath propagation. Furthermore, some focusing indicators such as entropy (E), contrast (C) and Rényi entropy (RE) provide us with a good focusing criterion when using TR-SAR.
Resumo:
The aim of this research was to implement a methodology through the generation of a supervised classifier based on the Mahalanobis distance to characterize the grapevine canopy and assess leaf area and yield using RGB images. The method automatically processes sets of images, and calculates the areas (number of pixels) corresponding to seven different classes (Grapes, Wood, Background, and four classes of Leaf, of increasing leaf age). Each one is initialized by the user, who selects a set of representative pixels for every class in order to induce the clustering around them. The proposed methodology was evaluated with 70 grapevine (V. vinifera L. cv. Tempranillo) images, acquired in a commercial vineyard located in La Rioja (Spain), after several defoliation and de-fruiting events on 10 vines, with a conventional RGB camera and no artificial illumination. The segmentation results showed a performance of 92% for leaves and 98% for clusters, and allowed to assess the grapevine’s leaf area and yield with R2 values of 0.81 (p < 0.001) and 0.73 (p = 0.002), respectively. This methodology, which operates with a simple image acquisition setup and guarantees the right number and kind of pixel classes, has shown to be suitable and robust enough to provide valuable information for vineyard management.
Resumo:
El estudio de materiales, especialmente biológicos, por medios no destructivos está adquiriendo una importancia creciente tanto en las aplicaciones científicas como industriales. Las ventajas económicas de los métodos no destructivos son múltiples. Existen numerosos procedimientos físicos capaces de extraer información detallada de las superficie de la madera con escaso o nulo tratamiento previo y mínima intrusión en el material. Entre los diversos métodos destacan las técnicas ópticas y las acústicas por su gran versatilidad, relativa sencillez y bajo coste. Esta tesis pretende establecer desde la aplicación de principios simples de física, de medición directa y superficial, a través del desarrollo de los algoritmos de decisión mas adecuados basados en la estadística, unas soluciones tecnológicas simples y en esencia, de coste mínimo, para su posible aplicación en la determinación de la especie y los defectos superficiales de la madera de cada muestra tratando, en la medida de lo posible, no alterar su geometría de trabajo. Los análisis desarrollados han sido los tres siguientes: El primer método óptico utiliza las propiedades de la luz dispersada por la superficie de la madera cuando es iluminada por un laser difuso. Esta dispersión produce un moteado luminoso (speckle) cuyas propiedades estadísticas permiten extraer propiedades muy precisas de la estructura tanto microscópica como macroscópica de la madera. El análisis de las propiedades espectrales de la luz laser dispersada genera ciertos patrones mas o menos regulares relacionados con la estructura anatómica, composición, procesado y textura superficial de la madera bajo estudio que ponen de manifiesto características del material o de la calidad de los procesos a los que ha sido sometido. El uso de este tipo de láseres implica también la posibilidad de realizar monitorizaciones de procesos industriales en tiempo real y a distancia sin interferir con otros sensores. La segunda técnica óptica que emplearemos hace uso del estudio estadístico y matemático de las propiedades de las imágenes digitales obtenidas de la superficie de la madera a través de un sistema de scanner de alta resolución. Después de aislar los detalles mas relevantes de las imágenes, diversos algoritmos de clasificacion automatica se encargan de generar bases de datos con las diversas especies de maderas a las que pertenecían las imágenes, junto con los márgenes de error de tales clasificaciones. Una parte fundamental de las herramientas de clasificacion se basa en el estudio preciso de las bandas de color de las diversas maderas. Finalmente, numerosas técnicas acústicas, tales como el análisis de pulsos por impacto acústico, permiten complementar y afinar los resultados obtenidos con los métodos ópticos descritos, identificando estructuras superficiales y profundas en la madera así como patologías o deformaciones, aspectos de especial utilidad en usos de la madera en estructuras. La utilidad de estas técnicas esta mas que demostrada en el campo industrial aun cuando su aplicación carece de la suficiente expansión debido a sus altos costes y falta de normalización de los procesos, lo cual hace que cada análisis no sea comparable con su teórico equivalente de mercado. En la actualidad gran parte de los esfuerzos de investigación tienden a dar por supuesto que la diferenciación entre especies es un mecanismo de reconocimiento propio del ser humano y concentran las tecnologías en la definición de parámetros físicos (módulos de elasticidad, conductividad eléctrica o acústica, etc.), utilizando aparatos muy costosos y en muchos casos complejos en su aplicación de campo. Abstract The study of materials, especially the biological ones, by non-destructive techniques is becoming increasingly important in both scientific and industrial applications. The economic advantages of non-destructive methods are multiple and clear due to the related costs and resources necessaries. There are many physical processes capable of extracting detailed information on the wood surface with little or no previous treatment and minimal intrusion into the material. Among the various methods stand out acoustic and optical techniques for their great versatility, relative simplicity and low cost. This thesis aims to establish from the application of simple principles of physics, surface direct measurement and through the development of the more appropriate decision algorithms based on statistics, a simple technological solutions with the minimum cost for possible application in determining the species and the wood surface defects of each sample. Looking for a reasonable accuracy without altering their work-location or properties is the main objetive. There are three different work lines: Empirical characterization of wood surfaces by means of iterative autocorrelation of laser speckle patterns: A simple and inexpensive method for the qualitative characterization of wood surfaces is presented. it is based on the iterative autocorrelation of laser speckle patterns produced by diffuse laser illumination of the wood surfaces. The method exploits the high spatial frequency content of speckle images. A similar approach with raw conventional photographs taken with ordinary light would be very difficult. A few iterations of the algorithm are necessary, typically three or four, in order to visualize the most important periodic features of the surface. The processed patterns help in the study of surface parameters, to design new scattering models and to classify the wood species. Fractal-based image enhancement techniques inspired by differential interference contrast microscopy: Differential interference contrast microscopy is a very powerful optical technique for microscopic imaging. Inspired by the physics of this type of microscope, we have developed a series of image processing algorithms aimed at the magnification, noise reduction, contrast enhancement and tissue analysis of biological samples. These algorithms use fractal convolution schemes which provide fast and accurate results with a performance comparable to the best present image enhancement algorithms. These techniques can be used as post processing tools for advanced microscopy or as a means to improve the performance of less expensive visualization instruments. Several examples of the use of these algorithms to visualize microscopic images of raw pine wood samples with a simple desktop scanner are provided. Wood species identification using stress-wave analysis in the audible range: Stress-wave analysis is a powerful and flexible technique to study mechanical properties of many materials. We present a simple technique to obtain information about the species of wood samples using stress-wave sounds in the audible range generated by collision with a small pendulum. Stress-wave analysis has been used for flaw detection and quality control for decades, but its use for material identification and classification is less cited in the literature. Accurate wood species identification is a time consuming task for highly trained human experts. For this reason, the development of cost effective techniques for automatic wood classification is a desirable goal. Our proposed approach is fully non-invasive and non-destructive, reducing significantly the cost and complexity of the identification and classification process.
Resumo:
This paper proposes the optimization relaxation approach based on the analogue Hopfield Neural Network (HNN) for cluster refinement of pre-classified Polarimetric Synthetic Aperture Radar (PolSAR) image data. We consider the initial classification provided by the maximum-likelihood classifier based on the complex Wishart distribution, which is then supplied to the HNN optimization approach. The goal is to improve the classification results obtained by the Wishart approach. The classification improvement is verified by computing a cluster separability coefficient and a measure of homogeneity within the clusters. During the HNN optimization process, for each iteration and for each pixel, two consistency coefficients are computed, taking into account two types of relations between the pixel under consideration and its corresponding neighbors. Based on these coefficients and on the information coming from the pixel itself, the pixel under study is re-classified. Different experiments are carried out to verify that the proposed approach outperforms other strategies, achieving the best results in terms of separability and a trade-off with the homogeneity preserving relevant structures in the image. The performance is also measured in terms of computational central processing unit (CPU) times.
Resumo:
In this paper, we propose a system for authenticating local bee pollen against fraudulent samples using image processing and classification techniques. Our system is based on the colour properties of bee pollen loads and the use of one-class classifiers to reject unknown pollen samples. The latter classification techniques allow us to tackle the major difficulty of the problem, the existence of many possible fraudulent pollen types. Also presented is a multi-classifier model with an ambiguity discovery process to fuse the output of the one-class classifiers. The method is validated by authenticating Spanish bee pollen types, the overall accuracy of the final system of being 94%. Therefore, the system is able to rapidly reject the non-local pollen samples with inexpensive hardware and without the need to send the product to the laboratory.
Resumo:
El objeto de esta Tesis doctoral es el desarrollo de una metodologia para la deteccion automatica de anomalias a partir de datos hiperespectrales o espectrometria de imagen, y su cartografiado bajo diferentes condiciones tipologicas de superficie y terreno. La tecnologia hiperespectral o espectrometria de imagen ofrece la posibilidad potencial de caracterizar con precision el estado de los materiales que conforman las diversas superficies en base a su respuesta espectral. Este estado suele ser variable, mientras que las observaciones se producen en un numero limitado y para determinadas condiciones de iluminacion. Al aumentar el numero de bandas espectrales aumenta tambien el numero de muestras necesarias para definir espectralmente las clases en lo que se conoce como Maldicion de la Dimensionalidad o Efecto Hughes (Bellman, 1957), muestras habitualmente no disponibles y costosas de obtener, no hay mas que pensar en lo que ello implica en la Exploracion Planetaria. Bajo la definicion de anomalia en su sentido espectral como la respuesta significativamente diferente de un pixel de imagen respecto de su entorno, el objeto central abordado en la Tesis estriba primero en como reducir la dimensionalidad de la informacion en los datos hiperespectrales, discriminando la mas significativa para la deteccion de respuestas anomalas, y segundo, en establecer la relacion entre anomalias espectrales detectadas y lo que hemos denominado anomalias informacionales, es decir, anomalias que aportan algun tipo de informacion real de las superficies o materiales que las producen. En la deteccion de respuestas anomalas se asume un no conocimiento previo de los objetivos, de tal manera que los pixeles se separan automaticamente en funcion de su informacion espectral significativamente diferenciada respecto de un fondo que se estima, bien de manera global para toda la escena, bien localmente por segmentacion de la imagen. La metodologia desarrollada se ha centrado en la implicacion de la definicion estadistica del fondo espectral, proponiendo un nuevo enfoque que permite discriminar anomalias respecto fondos segmentados en diferentes grupos de longitudes de onda del espectro, explotando la potencialidad de separacion entre el espectro electromagnetico reflectivo y emisivo. Se ha estudiado la eficiencia de los principales algoritmos de deteccion de anomalias, contrastando los resultados del algoritmo RX (Reed and Xiaoli, 1990) adoptado como estandar por la comunidad cientifica, con el metodo UTD (Uniform Targets Detector), su variante RXD-UTD, metodos basados en subespacios SSRX (Subspace RX) y metodo basados en proyecciones de subespacios de imagen, como OSPRX (Orthogonal Subspace Projection RX) y PP (Projection Pursuit). Se ha desarrollado un nuevo metodo, evaluado y contrastado por los anteriores, que supone una variacion de PP y describe el fondo espectral mediante el analisis discriminante de bandas del espectro electromagnetico, separando las anomalias con el algortimo denominado Detector de Anomalias de Fondo Termico o DAFT aplicable a sensores que registran datos en el espectro emisivo. Se han evaluado los diferentes metodos de deteccion de anomalias en rangos del espectro electromagnetico del visible e infrarrojo cercano (Visible and Near Infrared-VNIR), infrarrojo de onda corta (Short Wavelenght Infrared-SWIR), infrarrojo medio (Meadle Infrared-MIR) e infrarrojo termico (Thermal Infrared-TIR). La respuesta de las superficies en las distintas longitudes de onda del espectro electromagnetico junto con su entorno, influyen en el tipo y frecuencia de las anomalias espectrales que puedan provocar. Es por ello que se han utilizado en la investigacion cubos de datos hiperepectrales procedentes de los sensores aeroportados cuya estrategia y diseno en la construccion espectrometrica de la imagen difiere. Se han evaluado conjuntos de datos de test de los sensores AHS (Airborne Hyperspectral System), HyMAP Imaging Spectrometer, CASI (Compact Airborne Spectrographic Imager), AVIRIS (Airborne Visible Infrared Imaging Spectrometer), HYDICE (Hyperspectral Digital Imagery Collection Experiment) y MASTER (MODIS/ASTER Simulator). Se han disenado experimentos sobre ambitos naturales, urbanos y semiurbanos de diferente complejidad. Se ha evaluado el comportamiento de los diferentes detectores de anomalias a traves de 23 tests correspondientes a 15 areas de estudio agrupados en 6 espacios o escenarios: Urbano - E1, Semiurbano/Industrial/Periferia Urbana - E2, Forestal - E3, Agricola - E4, Geologico/Volcanico - E5 y Otros Espacios Agua, Nubes y Sombras - E6. El tipo de sensores evaluados se caracteriza por registrar imagenes en un amplio rango de bandas, estrechas y contiguas, del espectro electromagnetico. La Tesis se ha centrado en el desarrollo de tecnicas que permiten separar y extraer automaticamente pixeles o grupos de pixeles cuya firma espectral difiere de manera discriminante de las que tiene alrededor, adoptando para ello como espacio muestral parte o el conjunto de las bandas espectrales en las que ha registrado radiancia el sensor hiperespectral. Un factor a tener en cuenta en la investigacion ha sido el propio instrumento de medida, es decir, la caracterizacion de los distintos subsistemas, sensores imagen y auxiliares, que intervienen en el proceso. Para poder emplear cuantitativamente los datos medidos ha sido necesario definir las relaciones espaciales y espectrales del sensor con la superficie observada y las potenciales anomalias y patrones objetivos de deteccion. Se ha analizado la repercusion que en la deteccion de anomalias tiene el tipo de sensor, tanto en su configuracion espectral como en las estrategias de diseno a la hora de registrar la radiacion prodecente de las superficies, siendo los dos tipos principales de sensores estudiados los barredores o escaneres de espejo giratorio (whiskbroom) y los barredores o escaneres de empuje (pushbroom). Se han definido distintos escenarios en la investigacion, lo que ha permitido abarcar una amplia variabilidad de entornos geomorfologicos y de tipos de coberturas, en ambientes mediterraneos, de latitudes medias y tropicales. En resumen, esta Tesis presenta una tecnica de deteccion de anomalias para datos hiperespectrales denominada DAFT en su variante de PP, basada en una reduccion de la dimensionalidad proyectando el fondo en un rango de longitudes de onda del espectro termico distinto de la proyeccion de las anomalias u objetivos sin firma espectral conocida. La metodologia propuesta ha sido probada con imagenes hiperespectrales reales de diferentes sensores y en diferentes escenarios o espacios, por lo tanto de diferente fondo espectral tambien, donde los resultados muestran los beneficios de la aproximacion en la deteccion de una gran variedad de objetos cuyas firmas espectrales tienen suficiente desviacion respecto del fondo. La tecnica resulta ser automatica en el sentido de que no hay necesidad de ajuste de parametros, dando resultados significativos en todos los casos. Incluso los objetos de tamano subpixel, que no pueden distinguirse a simple vista por el ojo humano en la imagen original, pueden ser detectados como anomalias. Ademas, se realiza una comparacion entre el enfoque propuesto, la popular tecnica RX y otros detectores tanto en su modalidad global como local. El metodo propuesto supera a los demas en determinados escenarios, demostrando su capacidad para reducir la proporcion de falsas alarmas. Los resultados del algoritmo automatico DAFT desarrollado, han demostrado la mejora en la definicion cualitativa de las anomalias espectrales que identifican a entidades diferentes en o bajo superficie, reemplazando para ello el modelo clasico de distribucion normal con un metodo robusto que contempla distintas alternativas desde el momento mismo de la adquisicion del dato hiperespectral. Para su consecucion ha sido necesario analizar la relacion entre parametros biofisicos, como la reflectancia y la emisividad de los materiales, y la distribucion espacial de entidades detectadas respecto de su entorno. Por ultimo, el algoritmo DAFT ha sido elegido como el mas adecuado para sensores que adquieren datos en el TIR, ya que presenta el mejor acuerdo con los datos de referencia, demostrando una gran eficacia computacional que facilita su implementacion en un sistema de cartografia que proyecte de forma automatica en un marco geografico de referencia las anomalias detectadas, lo que confirma un significativo avance hacia un sistema en lo que se denomina cartografia en tiempo real. The aim of this Thesis is to develop a specific methodology in order to be applied in automatic detection anomalies processes using hyperspectral data also called hyperspectral scenes, and to improve the classification processes. Several scenarios, areas and their relationship with surfaces and objects have been tested. The spectral characteristics of reflectance parameter and emissivity in the pattern recognition of urban materials in several hyperspectral scenes have also been tested. Spectral ranges of the visible-near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) from hyperspectral data cubes of AHS (Airborne Hyperspectral System), HyMAP Imaging Spectrometer, CASI (Compact Airborne Spectrographic Imager), AVIRIS (Airborne Visible Infrared Imaging Spectrometer), HYDICE (Hyperspectral Digital Imagery Collection Experiment) and MASTER (MODIS/ASTER Simulator) have been used in this research. It is assumed that there is not prior knowledge of the targets in anomaly detection. Thus, the pixels are automatically separated according to their spectral information, significantly differentiated with respect to a background, either globally for the full scene, or locally by the image segmentation. Several experiments on different scenarios have been designed, analyzing the behavior of the standard RX anomaly detector and different methods based on subspace, image projection and segmentation-based anomaly detection methods. Results and their consequences in unsupervised classification processes are discussed. Detection of spectral anomalies aims at extracting automatically pixels that show significant responses in relation of their surroundings. This Thesis deals with the unsupervised technique of target detection, also called anomaly detection. Since this technique assumes no prior knowledge about the target or the statistical characteristics of the data, the only available option is to look for objects that are differentiated from the background. Several methods have been developed in the last decades, allowing a better understanding of the relationships between the image dimensionality and the optimization of search procedures as well as the subpixel differentiation of the spectral mixture and its implications in anomalous responses. In other sense, image spectrometry has proven to be efficient in the characterization of materials, based on statistical methods using a specific reflection and absorption bands. Spectral configurations in the VNIR, SWIR and TIR have been successfully used for mapping materials in different urban scenarios. There has been an increasing interest in the use of high resolution data (both spatial and spectral) to detect small objects and to discriminate surfaces in areas with urban complexity. This has come to be known as target detection which can be either supervised or unsupervised. In supervised target detection, algorithms lean on prior knowledge, such as the spectral signature. The detection process for matching signatures is not straightforward due to the complications of converting data airborne sensor with material spectra in the ground. This could be further complicated by the large number of possible objects of interest, as well as uncertainty as to the reflectance or emissivity of these objects and surfaces. An important objective in this research is to establish relationships that allow linking spectral anomalies with what can be called informational anomalies and, therefore, identify information related to anomalous responses in some places rather than simply spotting differences from the background. The development in recent years of new hyperspectral sensors and techniques, widen the possibilities for applications in remote sensing of the Earth. Remote sensing systems measure and record electromagnetic disturbances that the surveyed objects induce in their surroundings, by means of different sensors mounted on airborne or space platforms. Map updating is important for management and decisions making people, because of the fast changes that usually happen in natural, urban and semi urban areas. It is necessary to optimize the methodology for obtaining the best from remote sensing techniques from hyperspectral data. The first problem with hyperspectral data is to reduce the dimensionality, keeping the maximum amount of information. Hyperspectral sensors augment considerably the amount of information, this allows us to obtain a better precision on the separation of material but at the same time it is necessary to calculate a bigger number of parameters, and the precision lowers with the increase in the number of bands. This is known as the Hughes effects (Bellman, 1957) . Hyperspectral imagery allows us to discriminate between a huge number of different materials however some land and urban covers are made up with similar material and respond similarly which produces confusion in the classification. The training and the algorithm used for mapping are also important for the final result and some properties of thermal spectrum for detecting land cover will be studied. In summary, this Thesis presents a new technique for anomaly detection in hyperspectral data called DAFT, as a PP's variant, based on dimensionality reduction by projecting anomalies or targets with unknown spectral signature to the background, in a range thermal spectrum wavelengths. The proposed methodology has been tested with hyperspectral images from different imaging spectrometers corresponding to several places or scenarios, therefore with different spectral background. The results show the benefits of the approach to the detection of a variety of targets whose spectral signatures have sufficient deviation in relation to the background. DAFT is an automated technique in the sense that there is not necessary to adjust parameters, providing significant results in all cases. Subpixel anomalies which cannot be distinguished by the human eye, on the original image, however can be detected as outliers due to the projection of the VNIR end members with a very strong thermal contrast. Furthermore, a comparison between the proposed approach and the well-known RX detector is performed at both modes, global and local. The proposed method outperforms the existents in particular scenarios, demonstrating its performance to reduce the probability of false alarms. The results of the automatic algorithm DAFT have demonstrated improvement in the qualitative definition of the spectral anomalies by replacing the classical model by the normal distribution with a robust method. For their achievement has been necessary to analyze the relationship between biophysical parameters such as reflectance and emissivity, and the spatial distribution of detected entities with respect to their environment, as for example some buried or semi-buried materials, or building covers of asbestos, cellular polycarbonate-PVC or metal composites. Finally, the DAFT method has been chosen as the most suitable for anomaly detection using imaging spectrometers that acquire them in the thermal infrared spectrum, since it presents the best results in comparison with the reference data, demonstrating great computational efficiency that facilitates its implementation in a mapping system towards, what is called, Real-Time Mapping.
Resumo:
Evolvable Hardware (EH) is a technique that consists of using reconfigurable hardware devices whose configuration is controlled by an Evolutionary Algorithm (EA). Our system consists of a fully-FPGA implemented scalable EH platform, where the Reconfigurable processing Core (RC) can adaptively increase or decrease in size. Figure 1 shows the architecture of the proposed System-on-Programmable-Chip (SoPC), consisting of a MicroBlaze processor responsible of controlling the whole system operation, a Reconfiguration Engine (RE), and a Reconfigurable processing Core which is able to change its size in both height and width. This system is used to implement image filters, which are generated autonomously thanks to the evolutionary process. The system is complemented with a camera that enables the usage of the platform for real time applications.