962 resultados para Cfd


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A two-dimensional (2-D) vortex-induced vibration (VIV) prediction model for high aspect ratio (LID) riser subjected to uniform and sheared flow is studied in this paper. The nonlinear structure equations are considered. The near wake dynamics describing the fluctuating nature of vortex shedding is modeled using classical van der Pol equation. A new approach was applied to calibrate the empirical parameters in the wake oscillator model. Compared the predicted results with the experimental data and computational fluid dynamic (CFD) results. Good agreements are observed. It can be concluded that the present model can be used as simple computational tool in predicting some aspects of VIV of long flexible structures. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For simulating multi-scale complex flow fields it should be noted that all the physical quantities we are interested in must be simulated well. With limitation of the computer resources it is preferred to use high order accurate difference schemes. Because of their high accuracy and small stencil of grid points computational fluid dynamics (CFD) workers pay more attention to compact schemes recently. For simulating the complex flow fields the treatment of boundary conditions at the far field boundary points and near far field boundary points is very important. According to authors' experience and published results some aspects of boundary condition treatment for far field boundary are presented, and the emphasis is on treatment of boundary conditions for the upwind compact schemes. The consistent treatment of boundary conditions at the near boundary points is also discussed. At the end of the paper are given some numerical examples. The computed results with presented method are satisfactory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High order accurate schemes are needed to simulate the multi-scale complex flow fields to get fine structures in simulation of the complex flows with large gradient of fluid parameters near the wall, and schemes on non-uniform mesh are desirable for many CFD (computational fluid dynamics) workers. The construction methods of difference approximations and several difference approximations on non-uniform mesh are presented. The accuracy of the methods and the influence of stretch ratio of the neighbor mesh increment on accuracy are discussed. Some comments on these methods are given, and comparison of the accuracy of the results obtained by schemes based on both non-uniform mesh and coordinate transformation is made, and some numerical examples with non-uniform mesh are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of dispersions in the numerical solutions of hydrodynamic equation systems has been realized for long time. It is only during the last two decades that extensive studies on the dispersion-controlled dissipative (DCD) schemes were reported. The studies have demonstrated that this kind of the schemes is distinct from conventional dissipation-based schemes in which the dispersion term of the modified equation is not considered in scheme construction to avoid nonphysical oscillation occurring in shock wave simulations. The principle of the dispersion controlled aims at removing nonphysical oscillations by making use of dispersion characteristics instead of adding artificial viscosity to dissipate the oscillation as the conventional schemes do. Research progresses on the dispersion controlled principles are reviewed in this paper, including the exploration of the role of dispersions in numerical simulations, the development of the dispersion-controlled principles, efforts devoted to high-order dispersion-controlled dissipative schemes, the extension to both the finite volume and the finite element methods, scheme verification and solution validation, and comments on several aspects of the schemes from author's viewpoint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a supersonic chemical oxygen-iodine laser (COIL) operating without primary buffer gas, the features of flowfield have significant effects on the Laser efficiency and beam quality. In this paper three-dimensional, multi-species, chemically reactive CFD technology was used to study the flowfield in mixing nozzle implemented with a supersonic interleaving jet configuration. The features of the flowfield as well as its effect on the spatial distribution of small signal gain were analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method based on the computational fluid dynamics (CFD) is presented for a flexible waverider's design. The generating bodies of this method could be any cones. In addition, either the leading edge or the profile of the scramjet's inlet is used as the waverider's definition curve, parameterized by the quadric function, the sigmoid function or the B-spline function. Furthermore, several numerical examples are carried out to validate the method and the relevant codes. The CFD results of the configurations show that all the designs are successful. Moreover, primary suggestions are proposed for practical design by comparing the geometrical and aerodynamic performances of the cone-derived waveriders at Mach 6.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A chemical oxygen iodine laser (COIL) that operates without primary buffer gas has become a new way of facilitating the compact integration of laser systems. To clarify the properties of spatial gain distribution, three-dimensional (3-D) computational fluid dynamics (CFD) technology was used to study the mixing and reactive flow in a COIL nozzle with an interleaving jet configuration in the supersonic section. The results show that the molecular iodine fraction in the secondary flow has a notable effect on the spatial distribution of the small signal gain. The rich iodine condition produces some negative gain regions along the jet trajectory, while the lean iodine condition slows down the development of the gain in the streamwise direction. It is also found that the new configuration of an interleaving jet helps form a reasonable gain field under appropriate operation conditions. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CFD计算为分析工具,在6马赫飞行速度、0°飞行攻角和30km飞行高度的设计条件下,综合分析了23种源自不同锥体流场所获乘波体的性能.分析结果表明,基本锥体的截面形状及截面宽高比均对乘波体性能有较大影响;当基本锥体的宽高比变化时,相应乘波体几何参数和升力系数的变化基本与之呈正比关系,而阻力系数及升阻比则出现极值.此外,我们发现在此飞行状态下,综合考虑乘波体底部阻力及计算误差等因素,当基本锥体为椭圆锥,且截面椭圆宽高比在1.5~1.618时,所获得的乘波体具有最大的升阻比;而当截面椭圆宽高比约为1:1.5时,所获得乘波体阻力最小.依据所得的计算结果,对于乘波飞行器的实际设计给出了相应的建议.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

氧碘化学激光器(COIL)的混合喷管内发生的是气体动力学、化学反应动力学以及光学等相互耦合的复杂过程,每个过程都对COIL性能有着至关重要的影响。利用3维CFD技术,通过求解层流Navier—Stokes方程与组分输运方程,结合10种组分和21个基元反应的化学反应模型,对简化后的化学氧碘激光RADICI。模型在亚声速段横向射流情况下,不同的主副流流量配比对小信号增益系数的影响情况进行了比较与分析。结果证明:过高或过低的碘分子浓度均不利于产生合理的小信号增益系数;存在最佳流量配比使小信号增益系数得到显著提高且分布均匀。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

为了改进微流控芯片中液体混合效率,尝试在一种液体中加入磁性纳米颗粒,增强与另外一种液体混合.在外加磁场作用下,对Y型微槽道中磁性与非磁性液体流动混合进行了实验观测,所需混合长度较无磁场时缩短了约2个数量级.利用CFD软件进行数值模拟,验证了外磁场作用下纳米磁性液体对流动混合有着明显的强化作用.