922 resultados para Cellular-Automata
Resumo:
The search for novel vaccines against tuberculosis (TB) would benefit from in-depths knowledge of the human immune responses to Mycobacterium tuberculosis (Mtb) infection. Here, we characterised in a low TB incidence country, the immune responses to a new candidate vaccine antigen against TB, the heparin-binding haemagglutinin (HBHA), in young children in contact with an active TB case (aTB). Children with no history of BCG vaccination were compared to those vaccinated at birth to compare the initial immune responses to HBHA with secondary immune responses. Fifty-eight children with aTB and 76 with latent TB infection (LTBI) were included and they were compared to 90 non-infected children. Whereas Mtb-infected children globally secreted more interferon-gamma (IFN-γ) in response to HBHA compared to the non-infected children, these IFN-γ concentrations were higher in previously BCG-vaccinated compared to non-vaccinated children. The IFN-γ concentrations were similar in LTBI and aTB children, but appeared to differ qualitatively. Whereas the IFN-γ secretion induced by native methylated and recombinant non-methylated HBHA were well correlated for aTB, this was not the case for LTBI children. Thus, Mtb-infected young children develop IFN-γ responses to HBHA that are enhanced by prior BCG vaccination, indicating BCG-induced priming, thereby supporting a prime-boost strategy for HBHA-based vaccines. The qualitative differences between aTB and LTBI in their HBHA-induced IFN-γ responses may perhaps be exploited for diagnostic purposes.
Resumo:
The objective of this study was to investigate whether the restored immune functions of vertically human immunodeficiency virus (HIV)-infected children who were severely immunodeficient before the initiation of highly active anti-retroviral therapy (HAART) are comparable to those of untreated slow progressors. We therefore assessed T cell proliferation and cytokine [interferon (IFN)-γ, interleukin (IL)-5 and IL-13] secretions after mitogen, recall antigens and HIV-1-specific stimulation in 12 untreated slow progressors, 16 untreated progressors and 18 treated patients. Treated children were profoundly immunodeficient before the initiation of HAART and had long-lasting suppression of viral replication on treatment. We demonstrated that slow progressors are characterized not only by the preservation of HIV-1-specific lymphoproliferative responses but also by the fact that these responses are clearly T helper type 1 (Th1)-polarized. Children on HAART had proliferative responses to HIV-1 p24 antigen, purified protein derivative (PPD) and tetanus antigen similar to slow progressors and higher than those of progressors. However, in contrast to slow progressors, most treated children exhibited a release of Th2 cytokines accompanying the IFN-γ secretion in response to the HIV-1 p24 antigen. Moreover, despite higher proliferative responses to phytohaemagglutinin (PHA) than the two groups of untreated children, treated children had lower levels of IFN-γ secretion in response to PHA than slow progressors. These data show that in severely immunodeficient vertically HIV-infected children, a long-lasting HAART allows recovering lymphoproliferative responses similar to untreated slow progressors. However, alterations in IFN-γ secretion in response to the mitogen PHA persisted, and their cytokine release after HIV-specific stimulation was biased towards a Th2 response. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.
Resumo:
To understand how a signaling molecule's activities are regulated, we need insight into the processes controlling the dynamic balance between its synthesis and degradation. For the Ins(1,3,4,5,6)P5 signal, this information is woefully inadequate. For example, the only known cytosolic enzyme with the capacity to degrade Ins(1,3,4,5,6)P5 is the tumour-suppressor PTEN [J.J. Caffrey, T. Darden, M.R. Wenk, S.B. Shears, FEBS Lett. 499 (2001) 6 ], but the biological relevance has been questioned by others [E.A. Orchiston, D. Bennett, N.R. Leslie, R.G. Clarke, L. Winward, C.P. Downes, S.T. Safrany, J. Biol. Chem. 279 (2004) 1116 ]. The current study emphasizes the role of physiological levels of PTEN in Ins(1,3,4,5,6)P5 homeostasis. We employed two cell models. First, we used a human U87MG glioblastoma PTEN-null cell line that hosts an ecdysone-inducible PTEN expression system. Second, the human H1299 bronchial cell line, in which PTEN is hypomorphic due to promoter methylation, has been stably transfected with physiologically relevant levels of PTEN. In both models, a novel consequence of PTEN expression was to increase Ins(1,3,4,5,6)P5 pool size by 30-40% (p<0.01); this response was wortmannin-insensitive and, therefore, independent of the PtdIns 3-kinase pathway. In U87MG cells, induction of the G129R catalytically inactive PTEN mutant did not affect Ins(1,3,4,5,6)P(5) levels. PTEN induction did not alter the expression of enzymes participating in Ins(1,3,4,5,6)P5 synthesis. Another effect of PTEN expression in U87MG cells was to decrease InsP6 levels by 13% (p<0.02). The InsP6-phosphatase, MIPP, may be responsible for the latter effect; we show that recombinant human MIPP dephosphorylates InsP6 to D/L-Ins(1,2,4,5,6)P5, levels of which increased 60% (p<0.05) following PTEN expression in U87MG cells. Overall, our data add higher inositol phosphates to the list of important cellular regulators [Y. Huang, R.P. Wernyj, D.D. Norton, P. Precht, M.C. Seminario, R.L. Wange, Oncogene, 24 (2005) 3819 ] the levels of which are modulated by expression of the highly pleiotropic PTEN protein.
Resumo:
Reproductive stress is apparent inAbra alba as a result of infection with the sporocysts ofBucephaloides gracilescens, culminating in castration in heavily infected specimens. The bivalve is also subject to mechanical stress from actively growing sporocyst tubules and nutritional stress due to the nutrient requirement of large numbers of germ balls within the sporocysts. Using the digestive cell lysosomal system ofAbra as a monitor, it was possible to demonstrate quantitatively a parasite-induced cellular stress response by applying a sensitive cytochemical test for lysosomal stability. Lysosomal stability was determined as the labilisation period for latent Nacetyl-β-hexosaminidase (NAH), measured by microdensitometry. In uninfectedAbra, digestive cell lysosomal NAH expressed structure-linked latency. Hence a significantly longer labilisation period was required compared with infectedAbra, where the parasitic burden with its associated stress effects resulted in a destabilisation of the lysosomal membrane. This reduced the latency of the enzyme, so that a much shorter labilisation period was required for the stressed tissue to express maximum lysosomal enzyme activity. It is suggested that the lysosomal system of the digestive cells inAbra can be used as a sensitive monitor of the stress induced by the sporocysts and developing cercariae ofBucephaloides.
Resumo:
Structural changes were observed in the digestive tubule epithelial cells of Mytilus edulis following long-term exposure to the water accommodated fraction (WAF) of North Sea crude oil (30 μg · l−1 total oil derived aromatic hydrocarbons). The changes observed involved a reduction in the height of the digestive cells beyond that demonstrated in a normal feeding cycle. In addition there was a loss of the normal synchrony of the digestive cells to a point where nearly all the tubules exhibited an appearance similar to that which is usually termed ‘reconstituting’. These alterations were quantified using an image analysis technique and the mean height of the digestive cells used as an index of digestive function or state. Long-term exposure also induced a radical alteration of the structure of secondary lysosomes within the digestive cells, resulting in the formation of large lysosomes, believed to be autolysosomes. Stereological analyses showed that these lysosomes are reduced in numbers and greatly increased in volume in comparison with controls. There is a concomitant increase in surface area of lysosomes per unit volume of digestive cell compared with control conditions. These alterations are indicative of fundamental changes in secondary lysosomal function involving an autophagic response to oil derived hydrocarbons. which would contribute to the reduction of digestive cell cytoplasm. These cellular alterations are discussed in terms of their use as indices of cell injury, in response to oil.
Resumo:
Certain polycyclic aromatic hydrocarbons and phenobarbital induced an increase in the activity of microsomal NADPH neotetrazolium reductase (linked to mixed function oxygenase systems) in the blood cells of Mytilus edulis. Phenanthrene and methylated naphthalenes caused lysosomal destabilisation which is believed to be directly related to the mechanism of cytotoxicity in the digestive cells. The use of these cytochemical techniques as indices of aromatic hydrocarbon contamination is discussed.