942 resultados para Cell membranes.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The GTP-binding protein ADP-ribosylation factor (ARF) initiates clathrin-coat assembly at the trans-Goli network (TGN) by generating high-affinity membrane-binding sites for the AP-1 adaptor complex. Both transmembrane proteins, which are sorted into the assembling coated bud, and novel docking proteins have been suggested to be partners with GTP-bound ARF in generating the AP-1-docking sites. The best characterized, and probably the major transmembrane molecules sorted into the clathrin-coated vesicles that form on the TGN, are the mannose 6-phosphate receptors (MPRs). Here, we have examined the role of the MPRs in the AP-1 recruitment process by comparing fibroblasts derived from embryos of either normal or MPR-negative animals. Despite major alterations to the lysosome compartment in the MPR-deficient cells, the steady-state distribution of AP-1 at the TGN is comparable to that of normal cells. Golgi-enriched membranes prepared from the receptor-negative cells also display an apparently normal capacity to recruit AP-1 in vitro in the presence of ARF and either GTP or GTPγS. The AP-1 adaptor is recruited specifically onto the TGN and not onto the numerous abnormal membrane elements that accumulate within the MPR-negative fibroblasts. AP-1 bound to TGN membranes from either normal or MPR-negative fibroblasts is fully resistant to chemical extraction with 1 M Tris-HCl, pH 7, indicating that the adaptor binds to both membrane types with high affinity. The only difference we do note between the Golgi prepared from the MPR-deficient cells and the normal cells is that AP-1 recruited onto the receptor-lacking membranes in the presence of ARF1·GTP is consistently more resistant to extraction with Tris. Because sensitivity to Tris extraction correlates well with nucleotide hydrolysis, this finding might suggest a possible link between MPR sorting and ARF GAP regulation. We conclude that the MPRs are not essential determinants in the initial steps of AP-1 binding to the TGN but, instead, they may play a regulatory role in clathrin-coated vesicle formation by affecting ARF·GTP hydrolysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Src family protein-tyrosine kinases are implicated in signaling via glycosylphosphatidylinositol (GPI)-anchored receptors. Both kinds of molecules reside in opposite leaflets of the same sphingolipid-enriched microdomains in the lymphocyte plasma membrane without making direct contact. Under detergent-free conditions, we isolated a GPI-enriched plasma membrane fraction, also containing transmembrane proteins, selectively associated with sphingolipid microdomains. Nonionic detergents released the transmembrane proteins, yielding core sphingolipid microdomains, limited amounts of which could also be obtained by detergent-free subcellular fractionation. Protein-tyrosine kinase activity in membranes containing both GPI-anchored and transmembrane proteins was much lower than in core sphingolipid microdomains but was strongly reactivated by nonionic detergents. The inhibitory mechanism acting on Lck and Fyn kinases in these membranes was independent of the protein-tyrosine phosphatase CD45 and was characterized as a mixed, noncompetitive one. We propose that in lymphocyte plasma membranes, Lck and Fyn kinases exhibit optimal activity when juxtaposed to the GPI- and sphingolipid-enriched core microdomains but encounter inhibitory conditions in surrounding membrane areas that are rich in glycerophospholipids and contain additional transmembrane proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Casein kinase 1 protein kinases are ubiquitous and abundant Ser/Thr-specific protein kinases with activity on acidic substrates. In yeast, the products of the redundant YCK1 and YCK2 genes are together essential for cell viability. Mutants deficient for these proteins display defects in cellular morphogenesis, cytokinesis, and endocytosis. Yck1p and Yck2p are peripheral plasma membrane proteins, and we report here that the localization of Yck2p within the membrane is dynamic through the cell cycle. Using a functional green fluorescent protein (GFP) fusion, we have observed that Yck2p is concentrated at sites of polarized growth during bud morphogenesis. At cytokinesis, GFP–Yck2p becomes associated with a ring at the bud neck and then appears as a patch of fluorescence, apparently coincident with the dividing membranes. The bud neck association of Yck2p at cytokinesis does not require an intact septin ring, and septin assembly is altered in a Yck-deficient mutant. The sites of GFP–Yck2p concentration and the defects observed for Yck-deficient cells together suggest that Yck plays distinct roles in morphogenesis and cytokinesis that are effected by differential localization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple isoforms of type 1 hexokinase (HK1) are transcribed during spermatogenesis in the mouse, including at least three that are presumably germ cell specific: HK1-sa, HK1-sb, and HK1-sc. Each of these predicted proteins contains a common, germ cell-specific sequence that replaces the porin-binding domain found in somatic HK1. Although HK1 protein is present in mature sperm and is tyrosine phosphorylated, it is not known whether the various potential isoforms are differentially translated and localized within the developing germ cells and mature sperm. Using antipeptide antisera against unique regions of HK1-sa and HK1-sb, it was demonstrated that these isoforms were not found in pachytene spermatocytes, round spermatids, condensing spermatids, or sperm, suggesting that HK1-sa and HK1-sb are not translated during spermatogenesis. Immunoreactivity was detected in protein from round spermatids, condensing spermatids, and mature sperm using an antipeptide antiserum against the common, germ cell-specific region, suggesting that HK1-sc was the only germ cell-specific isoform present in these cells. Two-dimensional SDS-PAGE suggested that all of the sperm HK1-sc was tyrosine phosphorylated, and that the somatic HK1 isoform was not present. Immunoelectron microscopy revealed that HK1-sc was associated with the mitochondria and with the fibrous sheath of the flagellum and was found in discrete clusters in the region of the membranes of the sperm head. The unusual distribution of HK1-sc in sperm suggests novel functions, such as extramitochondrial energy production, and also demonstrates that a hexokinase without a classical porin-binding domain can localize to mitochondria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physiological conditions that impinge on constitutive traffic and affect organelle structure are not known. We report that osmotically induced cell volume changes, which are known to occur under a variety of conditions, rapidly inhibited endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells. Both ER export and ER Golgi intermediate compartment (ERGIC)-to-Golgi trafficking steps were blocked, but retrograde transport was active, and it mediated ERGIC and Golgi collapse into the ER. Extensive tubulation and relatively rapid Golgi resident redistribution were observed under hypo-osmotic conditions, whereas a slower redistribution of the same markers, without apparent tubulation, was observed under hyperosmotic conditions. The osmotic stress response correlated with the perturbation of COPI function, because both hypo- and hyperosmotic conditions slowed brefeldin A-induced dissociation of βCOP from Golgi membranes. Remarkably, Golgi residents reemerged after several hours of sustained incubation in hypotonic or hypertonic medium. Reemergence was independent of new protein synthesis but required PKC, an activity known to mediate cell volume recovery. Taken together these results indicate the existence of a coupling between cell volume and constitutive traffic that impacts organelle structure through independent effects on anterograde and retrograde flow and that involves, in part, modulation of COPI function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Association of the Golgi-specific adaptor protein complex 1 (AP-1) with the membrane is a prerequisite for clathrin coat assembly on the trans-Golgi network (TGN). The AP-1 adaptor is efficiently recruited from cytosol onto the TGN by myristoylated ADP-ribosylation factor 1 (ARF1) in the presence of the poorly hydrolyzable GTP analog guanosine 5′-O-(3-thiotriphosphate) (GTPγS). Substituting GTP for GTPγS, however, results in only poor AP-1 binding. Here we show that both AP-1 and clathrin can be recruited efficiently onto the TGN in the presence of GTP when cytosol is supplemented with ARF1. Optimal recruitment occurs at 4 μM ARF1 and with 1 mM GTP. The AP-1 recruited by ARF1·GTP is released from the Golgi membrane by treatment with 1 M Tris-HCl (pH 7) or upon reincubation at 37°C, whereas AP-1 recruited with GTPγS or by a constitutively active point mutant, ARF1(Q71L), remains membrane bound after either treatment. An incubation performed with added ARF1, GTP, and AlFn, used to block ARF GTPase-activating protein activity, results in membrane-associated AP-1, which is largely insensitive to Tris extraction. Thus, ARF1·GTP hydrolysis results in lower-affinity binding of AP-1 to the TGN. Using two-stage assays in which ARF1·GTP first primes the Golgi membrane at 37°C, followed by AP-1 binding on ice, we find that the high-affinity nucleating sites generated in the priming stage are rapidly lost. In addition, the AP-1 bound to primed Golgi membranes during a second-stage incubation on ice is fully sensitive to Tris extraction, indicating that the priming stage has passed the ARF1·GTP hydrolysis point. Thus, hydrolysis of ARF1·GTP at the priming sites can occur even before AP-1 binding. Our finding that purified clathrin-coated vesicles contain little ARF1 supports the concept that ARF1 functions in the coat assembly process rather than during the vesicle-uncoating step. We conclude that ARF1 is a limiting factor in the GTP-stimulated recruitment of AP-1 in vitro and that it appears to function in a stoichiometric manner to generate high-affinity AP-1 binding sites that have a relatively short half-life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Specificity of vesicular transport is determined by pair-wise interaction between receptors (SNAP receptors or SNAREs) associated with a transport vesicle and its target membrane. Two additional factors, N-ethylmaleimide-sensitive fusion protein (NSF) and soluble NSF attachment protein (SNAP) are ubiquitous components of vesicular transport pathways. However, the precise role they play is not known. On the basis that NSF and SNAP can be recruited to preformed SNARE complexes, it has been proposed that NSF- and SNAP-containing complexes are formed after SNARE-dependent docking of transport vesicles. This would enable ATPase-dependent complex disassembly to be coupled directly to membrane fusion. Alternatively, binding and release of NSF/SNAP may occur before vesicle docking, and perhaps be involved in the activation of SNAREs. To gain more information about the point at which so-called 20S complexes form during the transport vesicle cycle, we have examined NSF/SNAP/SNARE complex turnover on clathrin-coated vesicle–derived membranes in situ. This has been achieved under conditions in which the extent of membrane docking can be precisely monitored. We demonstrate by UV-dependent cross-linking experiments, coupled to laser light-scattering analysis of membranes, that complexes containing NSF, SNAP, and SNAREs will form and dissociate on the surface of undocked transport vesicles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A panel of mAbs was elicited against intracellular membrane fractions from rat pancreas. One of the antibodies reacted with a 95-kDa protein that localizes primarily to the Golgi complex or the endoplasmic reticulum (ER), depending on cell type. The corresponding cDNA was cloned and sequenced and found to encode a protein of 97.6 kDa that we call GERp95 (Golgi ER protein 95 kDa). The protein copurifies with intracellular membranes but does not contain hydrophobic regions that could function as signal peptides or transmembrane domains. Biochemical analysis suggests that GERp95 is a cytoplasmically exposed peripheral membrane protein that exists in a protease-resistant complex. GERp95 belongs to a family of highly conserved proteins in metazoans and Schizosaccharomyces pombe. It has recently been determined that plant and Drosophila homologues of GERp95 are important for controlling the differentiation of stem cells (Bohmert et al., 1998; Cox et al., 1998; Moussian et al., 1998). In Caenorhabditis elegans, there are at least 20 members of this protein family. To this end, we have used RNA interference to show that the GERp95 orthologue in C. elegans is important for maturation of germ-line stem cells in the gonad. GERp95 and related proteins are an emerging new family of proteins that have important roles in metazoan development. The present study suggests that these proteins may exert their effects on cell differentiation from the level of intracellular membranes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cell envelope (CE) is a specialized structure that is important for barrier function in terminally differentiated stratified squamous epithelia. The CE is formed inside the plasma membrane and becomes insoluble as a result of cross-linking of constituent proteins by isopeptide bonds formed by transglutaminases. To investigate the earliest stages of assembly of the CE, we have studied human epidermal keratinocytes induced to terminally differentiate in submerged liquid culture as a model system for epithelia in general. CEs were harvested from 2-, 3-, 5-, or 7-d cultured cells and examined by 1) immunogold electron microscopy using antibodies to known CE or other junctional proteins and 2) amino acid sequencing of cross-linked peptides derived by proteolysis of CEs. Our data document that CE assembly is initiated along the plasma membrane between desmosomes by head-to-tail and head-to-head cross-linking of involucrin to itself and to envoplakin and perhaps periplakin. Essentially only one lysine and two glutamine residues of involucrin and two glutamines of envoplakin were used initially. In CEs of 3-d cultured cells, involucrin, envoplakin, and small proline-rich proteins were physically located at desmosomes and had become cross-linked to desmoplakin, and in 5-d CEs, these three proteins had formed a continuous layer extending uniformly along the cell periphery. By this time >15 residues of involucrin were used for cross-linking. The CEs of 7-d cells contain significant amounts of the protein loricrin, typically expressed at a later stage of CE assembly. Together, these data stress the importance of juxtaposition of membranes, transglutaminases, and involucrin and envoplakin in the initiation of CE assembly of stratified squamous epithelia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we compared the transport of newly synthesized cholesterol with that of influenza virus hemagglutinin (HA) from the endoplasmic reticulum to the plasma membrane. The arrival of cholesterol on the cell surface was monitored by cyclodextrin removal, and HA transport was monitored by surface trypsinization and endoglycosidase H digestion. We found that disassembly of the Golgi complex by brefeldin A treatment resulted in partial inhibition of cholesterol transport while completely blocking HA transport. Further, microtubule depolymerization by nocodazole inhibited cholesterol and HA transport to a similar extent. When the partitioning of cholesterol into lipid rafts was analyzed, we found that newly synthesized cholesterol began to associate with low-density detergent-resistant membranes rapidly after synthesis, before it was detectable on the cell surface, and its raft association increased further upon chasing. When cholesterol transport was blocked by using 15°C incubation, the association of newly synthesized cholesterol with low-density detergent-insoluble membranes was decreased and cholesterol accumulated in a fraction with intermediate density. Our results provide evidence for the partial contribution of the Golgi complex to the transport of newly synthesized cholesterol to the cell surface and suggest that detergent-resistant membranes are involved in the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the role of phosphatidylglycerol (PG) in photosynthesis, we constructed a mutant defective in the CDP-diacylglycerol synthase gene from a cyanobacterium, Synechocystis sp. PCC6803. The mutant, designated as SNC1, required PG supplementation for growth. Growth was repressed in PG-free medium concomitantly with the decrease in cellular content of PG. These results indicate that PG is essential, and that SNC1 is defective in PG synthesis. Decrease in PG content was accompanied by a reduction in the cellular content of chlorophyll, but with little effect on the contents of phycobilisome pigments, which showed that levels of chlorophyll–protein complexes decreased without alteration of those of phycobilisomes. Regardless of the decrease in the PG content, CO2-dependent photosynthesis by SNC1 was similar to that by the wild type on a chlorophyll basis, but consequently became lower on a cell basis. Simultaneously, the ratio of oxygen evolution of photosystem II (PSII) measured with p-benzoquinone to that of CO2-dependent photosynthesis, which ranged between 1.3 and 1.7 in the wild type. However, it was decreased in SNC1 from 1.3 to 0.4 during the early growth phase where chlorophyll content and CO2-dependent photosynthesis were little affected, and then finally to 0.1, suggesting that PSII first lost its ability to reduce p-benzoquinone and then decreased in its level and actual activity. These results indicate that PG contributes to the accumulation of chlorophyll–protein complexes in thylakoid membranes, and also to normal functioning of PSII.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The positional relationships among all of the visible organelles in a densely packed region of cytoplasm from an insulin secreting, cultured mammalian cell have been analyzed in three dimensions (3-D) at ≈6 nm resolution. Part of a fast frozen/freeze-substituted HIT-T15 cell that included a large portion of the Golgi ribbon was reconstructed in 3-D by electron tomography. The reconstructed volume (3.1 × 3.2 × 1.2 μm3) allowed sites of interaction between organelles, and between microtubules and organellar membranes, to be accurately defined in 3-D and quantitatively analyzed by spatial density analyses. Our data confirm that the Golgi in an interphase mammalian cell is a single, ribbon-like organelle composed of stacks of flattened cisternae punctuated by openings of various sizes [Rambourg, A., Clermont, Y., & Hermo, L. (1979) Am. J. Anat. 154, 455–476]. The data also show that the endoplasmic reticulum (ER) is a single continuous compartment that forms close contacts with mitochondria, multiple trans Golgi cisternae, and compartments of the endo-lysosomal system. This ER traverses the Golgi ribbon from one side to the other via cisternal openings. Microtubules form close, non-random associations with the cis Golgi, the ER, and endo-lysosomal compartments. Despite the dense packing of organelles in this Golgi region, ≈66% of the reconstructed volume is calculated to represent cytoplasmic matrix. We relate the intimacy of structural associations between organelles in the Golgi region, as quantified by spatial density analyses, to biochemical mechanisms for membrane trafficking and organellar communication in mammalian cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphatidylcholine and phosphatidylethanolamine are the most abundant phospholipids in eukaryotic cells and thus have major roles in the formation and maintenance of vesicular membranes. In yeast, diacylglycerol accepts a phosphocholine moiety through a CPT1-derived cholinephosphotransferase activity to directly synthesize phosphatidylcholine. EPT1-derived activity can transfer either phosphocholine or phosphoethanolamine to diacylglcyerol in vitro, but is currently believed to primarily synthesize phosphatidylethanolamine in vivo. In this study we report that CPT1- and EPT1-derived cholinephosphotransferase activities can significantly overlap in vivo such that EPT1 can contribute to 60% of net phosphatidylcholine synthesis via the Kennedy pathway. Alterations in the level of diacylglycerol consumption through alterations in phosphatidylcholine synthesis directly correlated with the level of SEC14-dependent invertase secretion and affected cell viability. Administration of synthetic di8:0 diacylglycerol resulted in a partial rescue of cells from SEC14-mediated cell death. The addition of di8:0 diacylglycerol increased di8:0 diacylglycerol levels 20–40-fold over endogenous long-chain diacylglycerol levels. Di8:0 diacylglcyerol did not alter endogenous phospholipid metabolic pathways, nor was it converted to di8:0 phosphatidic acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A reversibly glycosylated polypeptide from pea (Pisum sativum) is thought to have a role in the biosynthesis of hemicellulosic polysaccharides. We have investigated this hypothesis by isolating a cDNA clone encoding a homolog of Arabidopsis thaliana, Reversibly Glycosylated Polypeptide-1 (AtRGP1), and preparing antibodies against the protein encoded by this gene. Polyclonal antibodies detect homologs in both dicot and monocot species. The patterns of expression and intracellular localization of the protein were examined. AtRGP1 protein and RNA concentration are highest in roots and suspension-cultured cells. Localization of the protein shows it to be mostly soluble but also peripherally associated with membranes. We confirmed that AtRGP1 produced in Escherichia coli could be reversibly glycosylated using UDP-glucose and UDP-galactose as substrates. Possible sites for UDP-sugar binding and glycosylation are discussed. Our results are consistent with a role for this reversibly glycosylated polypeptide in cell wall biosynthesis, although its precise role is still unknown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expression of the human protooncogene bcl-2 protects neural cells from death induced by many forms of stress, including conditions that greatly elevate intracellular Ca2+. Considering that Bcl-2 is partially localized to mitochondrial membranes and that excessive mitochondrial Ca2+ uptake can impair electron transport and oxidative phosphorylation, the present study tested the hypothesis that mitochondria from Bcl-2-expressing cells have a higher capacity for energy-dependent Ca2+ uptake and a greater resistance to Ca(2+)-induced respiratory injury than mitochondria from cells that do not express this protein. The overexpression of bcl-2 enhanced the mitochondrial Ca2+ uptake capacity using either digitonin-permeabilized GT1-7 neural cells or isolated GT1-7 mitochondria by 1.7 and 3.9 fold, respectively, when glutamate and malate were used as respiratory substrates. This difference was less apparent when respiration was driven by the oxidation of succinate in the presence of the respiratory complex I inhibitor rotenone. Mitochondria from Bcl-2 expressors were also much more resistant to inhibition of NADH-dependent respiration caused by sequestration of large Ca2+ loads. The enhanced ability of mitochondria within Bcl-2-expressing cells to sequester large quantities of Ca2+ without undergoing profound respiratory impairment provides a plausible mechanism by which Bcl-2 inhibits certain forms of delayed cell death, including neuronal death associated with ischemia and excitotoxicity.