926 resultados para Cationic surfactants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism behind the immunostimulatory effect of the cationic liposomal vaccine adjuvant dimethyldioctadecylammonium and trehalose 6,6′- dibehenate (DDA:TDB) has been linked to the ability of these cationic vesicles to promote a depot after administration, with the liposomal adjuvant and the antigen both being retained at the injection site. This can be attributed to their cationic nature, since reduction in vesicle size does not influence their distribution profile yet neutral or anionic liposomes have more rapid clearance rates. Therefore the aim of this study was to investigate the impact of a combination of reduced vesicle size and surface pegylation on the biodistribution and adjuvanticity of the formulations, in a bid to further manipulate the pharmacokinetic profiles of these adjuvants. From the biodistribution studies, it was found that with small unilamellar vesicles (SUVs), 10% PEGylation of the formulation could influence liposome retention at the injection site after 4 days, whilst higher levels (25 mol%) of PEG blocked the formation of a depot and promote clearance to the draining lymph nodes. Interestingly, whilst the use of 10% PEG in the small unilamellar vesicles did not block the formation of a depot at the site of injection, it did result in earlier antibody response rates and switch the type of T cell responses from a Th1 to a Th2 bias suggesting that the presence of PEG in the formulation not only control the biodistribution of the vaccine, but also results in different types of interactions with innate immune cells. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incorporation of the glycolipid trehalose 6,6′-dibehenate (TDB) into cationic liposomes composed of the quaternary ammonium compound dimethyldioctadecylammonium (DDA) produce an adjuvant system which induces a powerful cell-mediated immune response and a strong antibody response, desirable for a high number of disease targets. We have used differential scanning calorimetry (DSC) to investigate the effect of TDB on the gel-fluid phase transition of DDA liposomes and to demonstrate that TDB is incorporated into DDA liposome bilayers. Transmission Electron Microscopy (TEM) and cryo-TEM confirmed that liposomes were formed when a lipid film of DDA containing small amounts of TDB was hydrated in an aqueous buffer solution at physiological pH. Furthermore, time development of particle size and zeta potential of DDA liposomes incorporating TDB during storage at 4°C and 25°C, indicates that TDB effectively stabilizes the DDA liposomes. Immunization of mice with the mycobacterial fusion protein Ag85B-ESAT-6 in DDA-TDB liposomes induced a strong, specific Th1 type immune response characterized by substantial production of the interferon-γ cytokine and high levels of IgG2b isotype antibodies. The lymphocyte subset releasing the interferon-γ was identified as CD4 T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cationic liposomes have been extensively explored for their efficacy in delivering nucleic acids, by offering the ability to protect plasmid DNA against degradation, promote gene expression and, in the case of DNA vaccines, induce both humoural and cellular immune responses. DNA vaccines may also offer advantages in terms of safety, but they are less effective and need an adjuvant to enhance their immunogenicity. Therefore, cationic liposomes can be utilised as delivery systems and/or adjuvants for DNA vaccines to stimulate stronger immune responses. To explore the role of liposomal systems within plasmid DNA delivery, parameters such as the effect of lipid composition, method of liposome preparation and presence of electrolytes in the formulation were investigated in characterisation studies, in vitro transfection studies and in vivo biodistribution and immunisation studies. Liposomes composed of 1,2-dioleoyl-sn-glycero 3-phosphoethanolamine (DOPE) in combination with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 1,2-stearoyl-3- trimethylammonium-propane (DSTAP) were prepared by the lipid hydration method and hydrated in aqueous media with or without presence of electrolytes. Whilst the in vitro transfection efficiency of all liposomes resulted to be higher than Lipofectin, DSTAP-based liposomes showed significantly higher transfection efficiency than DOTAP-based formulations. Furthermore, upon intramuscular injection of liposomal DNA vaccines, DSTAP-based liposomes showed a significantly stronger depot effect at the injection site. This could explain the result of heterologous immunisation studies, which revealed DSTAP-based liposomal vaccines induce stronger immune responses compared to DOTAP-based formulations. Previous studies have shown that having more liposomally associated antigen at the injection site would lead to more drainage of them into the local lymph nodes. Consequently, this would lead to more antigens being presented to antigen presenting cells, which are circulating in lymph nodes, and this would initiate a stronger immune response. Finally, in a comparative study, liposomes composed of dimethyldioctadecylammonium bromide (DDA) in combination with DOPE or immunostimulatory molecule of trehalose 6,6-dibehenate (TDB) were prepared and investigated in vitro and in vivo. Results showed that although DDA:TDB is not able to transfect the cells efficiently in vitro, this formulation induces stronger immunity compared to DDA:DOPE due to the immunostimulatory effects of TDB. This study demonstrated, while the presence of electrolytes did not improve immune responses, small unilamellar vesicle (SUV) liposomes induced stronger humoural immune responses compared to dehydration rehydration vesicle (DRV) liposomes. Moreover, lipid composition was shown to play a key role in in vitro and in vivo behaviour of the formulations, as saturated cationic lipids provided stronger immune responses compared to unsaturated lipids. Finally, heterologous prime/boost immunisation promoted significantly stronger immune responses compared to homologous vaccination of DNA vaccines, however, a single immunisation of subunit vaccine provoked comparable levels of immune response to the heterologous regimen, suggesting more immune efficiency for subunit vaccines compared to DNA vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The "living" and/or controlled cationic ring-opening bulk copolymerization of oxetane (Ox) with tetrahydropyran (THP) (cyclic ether with no homopolymerizability) at 35°C was examined using ethoxymethyl-1 -oxoniacyclohexane hexafluoroantimonate (EMOA) and (BF3 · CH3OH)THP as fast and slow initiator, respectively, yielding living and nonliving polymers with pseudoperiodic sequences (i.e., each pentamethylene oxide fragment inserted into the polymer is flanked by two trimethylene oxide fragments). Good control over number-average molecular weight (Mn up to 150000 g mol-1) with molecular weight distribution (MWD ∼ 1.4-1, 5) broader than predicted by the Poison distribution (MWDs > 1 +1/DPn) was attained using EMOA as initiating system, i.e., C 2H5OCH2Cl with 1.1 equiv of AgSbF6 as a stable catalyst and 1.1 equiv of 2,6-di-tert-butylpyridine used as a non-nucleophilic proton trap. With (BF3 · CH 3OH)THP, a drift of the linear dependence M n(GPC) vs Mn(theory) to lower molecular weight was observed together with the production of cyclic oligomers, ∼3-5% of the Ox consumed in THP against ∼30% in dichloromethane. Structural and kinetics studies highlighted a mechanism of chains growth where the rate of mutual conversion between "strain ACE species" (chain terminated by a tertiary 1-oxoniacyclobutane ion, Al) and "strain-free ACE species" (chain terminated by a tertiary 1-oxoniacyclohexane ion, Tl) depends on the rate at which Ox converts the stable species T1 (kind of "dormant" species) into a living "propagating" center A1 (i.e., k aapp[Ox]). The role of the THP solvent associated with the suspension of irreversible and reversible transfer reactions to polymer, when the polymerization is initiated with EMOA, was predicted by our kinetic considerations. The activation -deactivation pseudoequilibrium coefficient (Qt) was then calculated in a pure theoretical basis. From the measured apparent rate constant of Ox (kOxapp) and THP (kTHPapp = ka(endo)app) consumption, Qt and reactivity ratio (kp/kd, k a(endo)/ka(exo), and ks/ka(endo) were calculated, which then allow the determination of the transition rate constant of elementary step reactions that governs the increase of Mu with conversion. © 2009 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activation-deactivation pseudo-equilibrium coefficient Qt and constant K0 (=Qt x PaT1,t = ([A1]x[Ox])/([T1]x[T])) as well as the factor of activation (PaT1,t) and rate constants of elementary steps reactions that govern the increase of Mn with conversion in controlled cationic ring-opening polymerization of oxetane (Ox) in 1,4-dioxane (1,4-D) and in tetrahydropyran (THP) (i.e. cyclic ethers which have no homopolymerizability (T)) were determined using terminal-model kinetics. We show analytically that the dynamic behavior of the two growing species (A1 and T1) competing for the same resources (Ox and T) follows a Lotka-Volterra model of predator-prey interactions. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium borate hydroxide (MBH) nanowhiskers were synthesized using a one step hydrothermal process with different surfactants. The effect surfactants have on the structure and morphology of the MBH nanowhiskers has been investigated. The X-ray diffraction profile confirms that the as-synthesized material is of single phase, monoclinic MgBO2(OH). The variations in the size and shape of the different MBH nanowhiskers have been discussed based on the surface morphology analysis. The annealing of MBH nanowhiskers at 500 °C for 4 h has significant effect on the crystal structure and surface morphology. The UV–vis absorption spectra of the MBH nanowhiskers synthesized with and without surfactants show enhanced absorption in the low-wavelength region, and their optical band gaps were estimated from the optical band edge plots. The photoluminescence spectra of the MBH nanowhiskers produced with and without surfactants show broad emission band with the peak maximum at around 400 nm, which confirms the dominant contribution from the surface defect states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surfactants are versatile organic compounds that have, in a single molecule, double chemical affinity. The surfactant molecule is composed by a hy drophobic tail group, a hydrocarbon chain (linear, branched, or mixed), and by a hydrophilic head group, which contains polar groups that makes it able to be applied in the organophilization process of natural clays. Microemulsions are microheterogeneous b lends composed by: a surfactant, an oily phase (non - polar solvent), an aqueous phase, and, sometimes, a co - surfactant (short - chain alcohol). They are systems with thermodynamic stability, transparent, and have high solubility power. Vermiculite is a clay m ineral with an expandable crystalline structure that has high cation exchange capacity. In this work vermiculite was used to obtain organoclays. The ionic surfactants dodecyl ammonium chlori de (DDAC) and cetyltrimethylammonium bromide (C 16 TAB) were used in the organophilization process. They were used as surfactant aqueous solutions and, for DDAC, as a microemulsion system. The organoclays were used to promote the separation of binary mixtures of xylene isomers (ortho - and meta - xylene). Dif ferent analytical techniques were used to characterize microemulsion systems and also the nanoclays. It was produced a water - rich microemulsion system with 0.92 nm droplet average diameter. The vermiculite used in this work has a cationic exchange capacity of 172 meq/100g and magnesium as main cation (24.25%). The basal spacing of natural vermiculite and organo - vermiculites were obtained by X - ray Diffraction technique. The basal spacing was 1.48nm for natural vermiculite, 4.01nm for CTAB - vermiculite (CTAB 4 ) , and 3.03nm for DDAC - vermiculite (DDAC M1A), that proves the intercalation process. Separation tests were carried out in glass columns using three binary mixtures of xylene (ortho - xylene and meta - xylene). The results showed that the organovermiculite pre sented an enhanced chemical affinity by the mixture of hydrocarbons, when compared with the natural vermiculite, and also its preference by ortho - xylene. A factorial experimental design 2 2 with triplicate at the central point was used to optimize the xylen e separation process. The experimental design revealed that the initial concentration of isomers in the mixture and the mass of organovermiculite were the significant factors for an improved separation of isomers. In the experiments carried out using a bin ary mixture of ortho - xylene and meta - xylene (2:1), after its percolating through the organovermiculite bed (DDAC M1), it was observed the preference of the organoclay by the ortho - xylene isomer, which was retained in greater quantity than the meta - xylene o ne. At the end of the treatment, it was obtained a final concentration in meta - xylene of 47.52%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sandstone-type reservoir rocks are commonly responsible for oil accumulation. The wettability is an important parameter for the physical properties of the container, since it interferes in characteristics such as relative permeability to the aqueous phase, residual oil distribution in the reservoir, operating characteristics with waterflood and recovery of crude oil. This study applied different types of microemulsion systems - MES - in sandstone reservoirs and evaluated their influences on wettability and residual oil recovery. For this purpose, four microemulsion were prepared by changing the nature of ionic surfactants (ionic and nonionic). Microemulsions could then be characterized by surface tension analysis, density, particle diameter and viscosity in the temperature range 30° C to 70° C. The studied oil was described as light and the sandstone rock was derived from the Botucatu formation. The study of the influence of microemulsion systems on sandstone wettability was performed by contact angle measurements using as parameters the rock treatment time with the MES and the time after the brine surface contact by checking the angle variation behavior. In the study results, the rock was initially wettable to oil and had its wettability changed to mixed wettability after treatment with MES, obtaining preference for water. Regarding rock-MES contact time, it was observed that the rock wettability changed more when the contact time between the surface and the microemulsion systems was longer. It was also noted only a significant reduction for the first 5 minutes of interaction between the treated surface and brine. The synthesized anionic surfactant, commercial cationic, commercial anionic and commercial nonionic microemulsion systems presented the best results, respectively. With regard to enhanced oil recovery performance, all systems showed a significant percentage of recovered oil, with the anionic systems presenting the best results. A percentage of 80% recovery was reached, confirming the wettability study results, which pointed the influence of this property on the interaction of fluids and reservoir rock, and the ability of microemulsion systems to perform enhanced oil recovery in sandstone reservoirs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sandstone-type reservoir rocks are commonly responsible for oil accumulation. The wettability is an important parameter for the physical properties of the container, since it interferes in characteristics such as relative permeability to the aqueous phase, residual oil distribution in the reservoir, operating characteristics with waterflood and recovery of crude oil. This study applied different types of microemulsion systems - MES - in sandstone reservoirs and evaluated their influences on wettability and residual oil recovery. For this purpose, four microemulsion were prepared by changing the nature of ionic surfactants (ionic and nonionic). Microemulsions could then be characterized by surface tension analysis, density, particle diameter and viscosity in the temperature range 30° C to 70° C. The studied oil was described as light and the sandstone rock was derived from the Botucatu formation. The study of the influence of microemulsion systems on sandstone wettability was performed by contact angle measurements using as parameters the rock treatment time with the MES and the time after the brine surface contact by checking the angle variation behavior. In the study results, the rock was initially wettable to oil and had its wettability changed to mixed wettability after treatment with MES, obtaining preference for water. Regarding rock-MES contact time, it was observed that the rock wettability changed more when the contact time between the surface and the microemulsion systems was longer. It was also noted only a significant reduction for the first 5 minutes of interaction between the treated surface and brine. The synthesized anionic surfactant, commercial cationic, commercial anionic and commercial nonionic microemulsion systems presented the best results, respectively. With regard to enhanced oil recovery performance, all systems showed a significant percentage of recovered oil, with the anionic systems presenting the best results. A percentage of 80% recovery was reached, confirming the wettability study results, which pointed the influence of this property on the interaction of fluids and reservoir rock, and the ability of microemulsion systems to perform enhanced oil recovery in sandstone reservoirs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main goal of this thesis was to prepare medium-chain-length poly-3-hydroxyalkanoate (mcl-PHA) nanoparticle suspensions at high solids content (≥ 10 % w/v). A two-stage emulsification-solvent evaporation process was employed to produce poly-3-hydroxydecanoate (PHD) suspensions. The formulation and processing conditions including ultrasonication time and amplitude, selection of solvent, and selection of surfactants and their concentrations were investigated to make concentrated suspensions (10 and 30 % (w/v)) of PHD with particles less than 300 nm. Among the ionic surfactants tested to stabilize the suspension, the anionic, sodium dodecyl sulphate (SDS), and the cationic, dodecyltrimethylammonium bromide (DTAB) surfactants produced the smallest particle sizes (~100 nm). However, more stabilized nanoparticles were obtained when the ionic surfactant, SDS, was combined with any of the non-ionic surfactants tested, with polyoxyethylene octyl phenyl ether (Triton X-100) or polyoxyethylene (20) sorbitan monooleate (Tween 80) resulting in a slight increase in zeta potential over 30 days while the zeta potential with other non-ionic surfactants decreased. Mcl-PHA containing 11 and 18 % of carboxyl groups was synthesized via free radical addition reaction of 11-mercaptoundecanoic acid to the pendant double bonds of unsaturated poly-3-hydroxynonanoate (PHNU). Colloidal suspensions prepared by ultrasonication needed a surfactant to maintain stability, even at 0.4 % solids of mcl-PHA containing 11 % carboxylation (PHNC-1) unlike the stable suspensions prepared without surfactants by the titration method. Similar particle sizes (155.6 ± 8.4 to 163.4 ± 11.3 nm) and polydispersity indices (0.42 ± 0.03 to 0.49 ± 0.04) were obtained when several non-ionic surfactants were tested to minimize particle agglomeration, with the smallest particles obtained with Triton X-100. When Triton X-100 was combined with a variety of ionic surfactants, smaller nanoparticles (97.1 ± 1.1 to 121.7 ± 5.7 nm) with a narrower particle size distribution (0.21 ± 0.001 to 0.25 ± 0.003) were produced. The SDS and Triton X-100 combination was chosen to evaluate other mcl-PHAs at 10 % (w/v) solids content. Slightly smaller nanoparticles were formed with carboxylated mcl-PHAs compared to mcl-PHAs having aliphatic pendant side chains. Mcl-PHA consisting of 18 % carboxylation (PHNC-2) formed a much smaller nanoparticles and higher zeta potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bisphosphonates (BPs) are a class of bone resorptive drug with a high affinity for the hydroxyapatite structure of bone matrices that are used for the treatment of osteoporosis. However, clinical application is limited by a common toxicity, BP-related osteonecrosis of the jaw. There is emerging evidence that BPs possess anticancer potential, but exploitation of these antiproliferative properties is limited by their toxicities. We previously reported the utility of a cationic amphipathic fusogenic peptide, RALA, to traffic anionic nucleic acids into various cell types in the form of cationic nanoparticles. We hypothesized that complexation with RALA could similarly be used to conceal a BP's hydroxyapatite affinity, and to enhance bioavailability, thereby improving anticancer efficacy. Incubation of RALA with alendronate, etidronate, risedronate, or zoledronate provoked spontaneous electrostatic formation of cationic nanoparticles that did not exceed 100 nm in diameter and that were stable over a range of temperatures and for up to 6 h. The nanoparticles demonstrated a pH responsiveness, possibly indicative of a conformational change, that could facilitate release of the BP cargo in the endosomal environment. RALA/BP nanoparticles were more potent anticancer agents than their free BP counterparts in assays investigating the viability of PC3 prostate cancer and MDA-MB-231 breast cancer cells. Moreover, RALA complexation potentiated the tumor growth delay activity of alendronate in a PC3 xenograft model of prostate cancer. Taken together, these findings further validate the use of BPs as repurposed anticancer agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current treatment strategies for the treatment of brain tumor have been hindered primarily by the presence of highly lipophilic insurmountable blood-brain barrier (BBB). The purpose of current research was to investigate the efficiency of engineered biocompatible polymeric nanoparticles (NPs) as drug delivery vehicle to bypass the BBB and enhance biopharmaceutical attributes of anti-metabolite methotrexate (MTX) encapsulated NPs. The NPs were prepared by solvent diffusion method using cationic bovine serum albumin (CBA), and characterized for physicochemical parameters such as particle size, polydispersity index, and zeta-potential; while the surface modification was confirmed by FTIR, and NMR spectroscopy. Developed NPs exhibited zestful relocation of FITC tagged NPs across BBB in albino rats. Further, hemolytic studies confirmed them to be non-toxic and biocompatible as compared to free MTX. In vitro cytotoxicity assay of our engineered NPs on HNGC1 tumor cells proved superior uptake in tumor cells; and elicited potent cytotoxic effect as compared to plain NPs and free MTX solution. The outcomes of the study evidently indicate the prospective of CBA conjugated poly (D,L-lactide-co-glycolide) (PLGA) NPs loaded with MTX in brain cancer bomber with amplified capability to circumvent BBB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis concerns work on structure and membrane interactions of enzymes involved in lipid synthesis, biomembrane and cell wall regulation and cell defense processes. These proteins, known as glycosyltransferases (GTs), are involved in the transfer of sugar moieties from nucleotide sugars to lipids or chitin polymers. Glycosyltransferases from three types of organisms have been investigated; one is responsible for vital lipid synthesis in Arabidopsis thaliana (atDGD2) and adjusts the lipid content in biomembranes if the plant experiences stressful growth conditions. This enzyme shares many structural features with another GT found in gram-negative bacteria (WaaG). WaaG is however continuously active and involved in synthesis of the protective lipopolysaccharide layer in the cell walls of Escherichia coli. The third type of enzymes investigated here are chitin synthases (ChS) coupled to filamentous growth in the oomycete Saprolegnia monoica. I have investigated two ChS-derived MIT domains that may be involved in membrane interactions within the endosomal pathway. From analysis of the three-dimensional structure and the amino-acid sequence, some important regions of these very large proteins were selected for in vitro studies. By the use of an array of biophysical methods (e.g. Nuclear Magnetic Resonance, Fluorescence and Circular Dichroism spectroscopy) and directed sequence analyses it was possible to shed light on some important details regarding the structure and membrane-interacting properties of the GTs. The importance of basic amino-acid residues and hydrophobic anchoring segments, both generally and for the abovementioned proteins specifically, is discussed. Also, the topology and amino-acid sequence of GT-B enzymes of the GT4 family are analyzed with emphasis on their biomembrane association modes. The results presented herein regarding the structural and lipid-interacting properties of GTs aid in the general understanding of glycosyltransferase activity. Since GTs are involved in a high number of biochemical processes in vivo it is of outmost importance to understand the underlying processes responsible for their activity, structure and interaction events. The results are likely to be useful for many applications and future experimental design within life sciences and biomedicine.