996 resultados para Catalytic cycles
Resumo:
The surface sites of MoP/SiO2 catalysts and their evolution under sulfiding conditions were characterized by IR spectroscopy using CO as the probe molecule. The HDS activities of thiophene were measured on the MoP/SiO2 catalyst that was subjected to different sulfidation and reactivation pretreatments. Cus Modelta+ (0 < delta less than or equal to 2) sites are probed on the surface of fresh MoP/SiO2 by molecularly adsorbed CO, exhibiting a characteristic IR band at 2045 cm(-1). The surface of MoP/SiO2 is gradually sulfided in HDS reactions, as revealed by the shift of the IR band at 2045 to ca. 2100 cm(-1). Although the surface of a MoP/SiO2 catalyst becomes partially sulfided, the HDS activity tests show that MoP/SiO2 is fairly stable in the initial stage of the HDS reaction, providing further evidence that molybdenum phosphide is a promising catalytic material for industrial HDS reactions. Two kinds of surface sulfur species are formed on the sulfided catalyst: reversibly and irreversibly bonded sulfur species. The MoP/SiO2 catalyst remains stable in the HDS of thiophene because most sulfur species formed under HDS conditions are reversibly bonded on the catalyst surface. A detrimental effect of presulfidation on the HDS activity is observed for the MoP/SiO2 catalyst treated by H2S/H-2 at temperatures higher than 623 K, which is ascribed to the formation of a large amount of the irreversibly bonded sulfur species. The irreversibly sulfided catalyst can be completely regenerated by an oxidation and a subsequent reduction under mild conditions. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Ni - V - O series catalysts for the oxidative dehydrogenation (ODH) of propane were prepared and characterized by BET, XRD, H-2- TPR, O-2-TPD-MS and electrical conductivity. At 425 degreesC a C3H6 selectivity of 49.9% was observed on Ni0.9V0.1OY at a C3H8 conversion of 19.4%, and the obtained selectivity is almost two times higher than that over NiO at the roughly same conversion of C3H8. The mobile oxygen species created by the interaction of NiO and V2O5 has been found in the composite catalysts by O-2-TPD-MS and electrical conductivity studies, which seems to be responsible for the enhanced selectivity of the propane oxidative dehydrogenation.
Resumo:
A series of novel ferrocenylphosphine-ketimine ligands 6 were prepared by reaction of (R,S-p)-PPFNH2-R or (S,S-p)-PPFNH2 with a variety of m-substituted acetophenones. A different catalytic activity was observed between ferrocenylphosphine-ketimine ligands and corresponding aldimine ligands. The efficiency and diastereomeric impact of these ferrocenylphosphine-ketimine ligands in Pd-catalyzed asymmetric allylic alkylation were first investigated, and higher enantioselectivity of over 98% e.e. with 95% yield was obtained by the use of ferrocenylphosphine-ketimine ligands. However, in Rh-catalyzed asymmetric hydrosilylation of aryl ketones, only 42% e.e. was obtained by the use of ferrocenylphosphine-ketimine ligands compared to 90% e.e. with the use of aldimine ligands. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Ce1-XNiXO2 oxides with X varying from 0.05 to 0.5 were prepared by different methods and characterized by XRD and TPR techniques. Ce(0.7)Mi(0.3)O(2) sample prepared by sol-gel method shows the highest reducibility and the highest catalytic activity for methane combustion. Three kinds of Ni phases co-exist in the Ce1-XNiXO2 catalysts prepared by sol-gel method: (i) aggregated NiO on the support CeO2, (ii) highly dispersed NiO with strong interaction with CeO2 and (iii) Ni atoms incorporated into CeO2 lattice. The distribution of different Ni species strongly depends on the preparation methods. The highly dispersed NiO shows the highest activity for methane combustion. The NiO aggregated on the support CeO2 shows lower catalytic activity for methane combustion, while the least catalytic activity is found for the Ni species incorporated into CeO2. Any oxygen vacancy formed in CeO2 lattice due to the incorporating of Ni atoms adsorbs and activates the molecular oxygen to form active oxygen species. So the highest catalytic activity for methane combustion on Ce0.7Ni0.3O2 catalyst is attributed not only to the highly dispersed Ni species but also to the more active oxygen species formed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Post-steam-treatment is a facile and effective method for improving the catalytic performances of Mo/HZSM-5 catalysts in methane dehydroaromatization under nonoxidative conditions. The treatment can enhance the stability of the catalyst and also give a higher methane conversion and a higher yield of light aromatics, as well as a decrease in the formation rate of carbonaceous deposits. (27)Al, (29)Si, and (1)H multinuclear magic angle spinning nuclear magnetic resonance, X-ray photoelectron spectroscopy, X-ray diffraction, X-ray fluorescence spectroscopy, and thermogravimetric analysis measurements as well as catalytic reaction evaluations were employed to conduct comparative studies on the properties of the catalysts before and after the post-steam-treatment. The results revealed that the number of free Bronsted acid sites per unit cell decreased, while more Mo species migrated into the HZSM-5 channels for the 6Mo/HZSM-5 catalysts after the post-steam-treatment. In addition, the average pore diameter was also larger for the post-steam-treated catalysts, and this was advantageous for mass transport of the reaction products. However, a severe post-steam-treatment, i.e., with longer treating time, of the 6Mo/HZSM-5 catalyst will lead to the formation of the Al(2)(MoO(4))(3) phases, which is detrimental to the reaction.
Resumo:
Partial oxidation of n-heptane (POH) for hydrogen generation was studied over several catalysts between 700 and 850degreesC. Modified Ni-based/gamma-Al2O3 catalyst exhibited not only good catalytic activity but also good carbon deposition resistance ability. Under the modified reaction conditions, 100% n-heptane conversion and 93% hydrogen selectivity can be obtained.
Resumo:
A metal ions (Ag, Bi, V, Mo) modified sol-gel method was used to prepare a mesoporous Ag0.01Bi0.85V0.54Mo0.45O4 catalytic membrane which was used in the selective oxidation of propane to acrolein. By optimizing the preparation parameters, a thin and perfect catalytically active membrane was successfully prepared. SEM results showed that the membrane thickness is similar to5 mum. XRD results revealed that Ag0.01Bi0.85V0.54Mo0.45O4 with a Scheelite structure, which is catalytically active for the selective oxidation of propane to acrolein, was formed in the catalytic membrane only when AgBiVMoO concentrations were higher than 40%. Catalytic reaction results demonstrated that the selective oxidation of propane could be controlled to a certain degree, such as to acrolein, in the catalytic membrane reactor (CMR) compared to the fixed bed reactor (FBR). For example, a selectivity of 54.85% for acrolein in the liquid phase was obtained in the CMR, while only 8.31% was achieved in the FBR. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The selective catalytic reduction of NO by CH4 was compared over In-Fe2O3/HZSM-5 catalysts prepared by impregnation and co-impregnation methods. It was found that the catalyst preparation method greatly affected the catalyst activity. The impregnated catalyst was very active, but the co-impregnated one showed poor activity. The In Fe2O3/HZSM-5 catalysts were investigated by Mossbauer spectroscopy. The results showed that indium cations entered into the iron oxide lattice in the co-impregnated catalyst, while the impregnated catalyst exhibited a more stable structure, when both of the catalysts were treated severely in the reaction atmosphere. Characterization by means of combined in situ temperature programmed reduction (TPR)- Mossbauer spectroscopy further revealed that the performances of the two catalysts were different in the TPR processes.
Resumo:
The selective catalytic reduction (SCR) of NOx by methane in the presence of excess oxygen was studied on a Zn-Co/HZSM-5 catalyst. It was found that the addition of Zn could improve effectively the selectivity of methane towards NOx reduction. When prepared by a coimpregnation method, the Zn-Co/HZSM-5 catalyst showed much higher catalytic activity than the two catalysts of a Zn/Co/HZSM-5 and Co/Zn/HZSM-5 prepared by the successive impregnation method. It is considered that there exists a cooperative effect among the Zn, Co and zeolite, which enhances the reduction of NO to NO2 reaction and the activation of methane. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The effect of iron promoter on the catalytic properties of Rh-Mn-Li/SiO2 catalyst in the synthesis Of C-2 oxygenates from syngas was investigated by means of the following techniques: CO hydrogenation reaction, temperature-programmed reduction (TPR), temperature-programmed desorption and reaction of adsorbed CO (CO-TPD and TPSR) and pulse adsorption of CO. The results showed that the addition of iron promoter could improve the activity of the catalysts. Unexpectedly, the yield of C-2 oxygenates increased greatly from 331.6 up to 457.5 g/(kg h) when 0.05% Fe was added into Rh-Mn-Li/SiO2 catalyst, while no change in the selectivity to C-2 oxygenates was observed. However, the activity and selectivity Of C-2 oxygenates were greatly decreased if the Fe amount exceeded 1.0%. The existence of a little iron decreased the reducibility of Rh precursor, while the reduction of Fe component itself became easier. CO uptake decreased with increasing the quantity of Fe addition. This phenomenon was further confirmed by CO-TPD results. The CO-TPD and TPSR results showed that only the strongly adsorbed CO could be hydrogenated, while the weakly adsorbed CO was desorbed. We propose that Fe is highly dispersed and in close contact with Rh and Mn; such arrangements were responsible for the high yield Of C-2 oxygenates. (C) 2002 Elsevier Science B.V. All rights reserved.