948 resultados para Caspase substrate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brain is one of the first organs affected during sepsis development resulting in apoptosis for a short-term and cognitive impairment for a long-term. Despite its importance, the mechanisms of brain dysfunction during sepsis are not fully elucidated. Thus, we here, in an animal model of sepsis, evaluated apoptosis in the dentate gyrus cell layer of the hippocampus to document the involvement of caspase-3 in the pathogenesis of neuronal apoptosis. Wistar rats sham-operated or submitted to the cecal ligation and perforation (CLP) procedure were killed at 12, 24, 48 h, and 10 days after surgery for the determination of caspase-3 and apoptosis rate. In a separate cohort of animals, a caspase-3-specific inhibitor was administered and animals were killed at 12 h after sepsis. An increase in the number of apoptotic cells 12, 24, and 48 h by histopathological evaluations and an increase of caspase-3 apoptotic cells 12 and 24 h after sepsis induction were observed. The caspase-3 inhibitor decreases the number of apoptotic cells by histopathological evaluations but not by immunohistochemistry evaluations. Caspase-3 is involved in part in apoptosis in the dentate gyrus cell layer of the hippocampus in septic rats submitted by CLP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catheter ablation of ventricular tachycardia (VT) is effective and particularly useful in patients with frequent defibrillator interventions. Various substrate modification techniques have been described for unmappable or hemodynamically intolerable VT. Noninducibility is the most frequently used end point but is associated with significant limitations, so the optimal end point remains unclear. We hypothesized that elimination of local abnormal ventricular activities (LAVAs) during sinus rhythm or ventricular pacing would be a useful and effective end point for substrate-based VT ablation. As an adjunct to this strategy, we used a new high-density mapping catheter and frequently used epicardial mapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soybean lipoxygenase-1 (SBLO-1) catalyzes the oxygenation of polyunsaturated fatty acids into conjugated diene hydroperoxides. The three dimensional structure of SBLO-1 is known, but it is not certain how substrates bind. One hypothesis involves the transient separation of helix-2 and helix-11 located on the exterior of the molecule in front of the active site iron. A second hypothesis involves a conformational change in the side chains of residues leucine 541 and threonine 259. To test these hypotheses, site directed mutagenesis was used to create a cysteine mutation on each helix, which could allow for the formation of a disulfide linkage. Disulfide formation between the two cysteines in the T259C,S545C mutant was found to be unfavorable, but later shown to be present at higher pH values using SDS-PAGE. Treatment of the T259C,S545C with the crosslinker 2,3-dibromomaleimide (DBM) resulted in a 50% reduction in catalytic activity. No loss of activity was observed when the single mutant, S545C, or the wild type was treated with DBM. Single mutants T259C and L541C both showed approximately 20% reduction in the rate after addition of DBM. Double mutants T259C,L541C and S263C,S545C showed approximately 30% reduction in the rate after addition of DBM. Single mutants T259C and L541C showed an increase in activity after incubation with NEM. Double mutants T259C,S545C and T259C,L541C showed an increase in activity after incubation with NEM. The S263C,S545C double mutant showed a slight decrease in activity in the presence of NEM. It is unclear how the NEM and DBM are interacting with the molecule, but this can easily be determined through mass spectrometry experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipoxygenases are a class of enzymes which consist of non-heme iron dioxygenases that are produced by fungi, plants, and mammals and catalyze the oxygenation of polyunsaturated fatty acid substrates to unsaturated fatty acid hydroperoxide products. The unsaturated fatty acid hydroperoxide products are stereo- and regiospecific. One such lipoxygenase, soybean lipoxygenase-1 (SBLO-1), catalyzes the conversion of linoleate to 13-hydroperoxy-9(Z),11(E)-octadecadienoate (13-HPOD) and a small amount of 9-hydroperoxy-10(E),12(Z)-octadecadienoate (9-HPOD). Although the structure of SBLO-1 is known and it is the most widely studied lipoxygenase, how it binds to substrate is still poorly understood. Two competing binding hypotheses that have been used to understand and explain the binding are the head first binding model and the tail first binding model. The head first binding model predicts linoleate binds with its polar carboxylate group in the binding pocket and the methyl terminus at the surface of the binding pocket. The tail first binding model predicts that linoleate binds with its methyl terminus end in the binding pocket and the polar carboxylate group at the surface of the binding pocket. Both binding models have been used in the explanation of previous work. In previous work the replacement of phenylalanine with valine has been performed to produce the phe557val mutant SBLO-1. The mutant SBLO-1 was then used in the enzymatic oxygenation of linoleate. With this mutant, the amount of 9-HPOD that is formed increases. This result has been interpreted using the head-first binding model in which the smaller valine residue allows linoleate to bind with the polar carboxylate group of linoleate interacting with arginine-707. The work presented in this thesis confirms the regiochemical results of the previous work and further tests the head-first binding model. If head-first binding occurs, the 9-HPOD is expected to have primarily S configuration. Utilizing chiral-phase HPLC, it was found that the 9-HPOD produced by the phe557val mutant SBLO-1 is primarily S, consistent with head-first binding. The head-first binding model was also tested using linoleyl dimethylamine (LDMA), which has been shown to be a good substrate for SBLO-1 at pH 7.0, where LDMA is thought to be positively charged. This model predicts that less of the 9-peroxide should be produced with this substrate. Through the use of gas chromatography/mass spectrometry, it was found that the conversion of LDMA by the phe557val mutant SBLO-1 resulted in the formation of a 46:54 mixture of the 13-peroxide:9-peroxide. The higher amount of 9-peroxide is the opposite of what is expected for the currently proposed model suggesting that the proposed model may not be entirely correct. The results thus far have been consistent with reverse binding but not with the proposed interaction of the polar end of the substrate with arginine-707.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Nuclear factor (NF)-kappaB signalling pathway plays a critical role in the regulation and coordination of a wide range of cellular events such as cell growth, apoptosis and cell differentiation. Activation of the IKK (inhibitor of NF-kappaB kinase) complex is a crucial step and a point of convergence of all known NF-kappaB signalling pathways. To analyse bovine IKKalpha (IKK1), IKKbeta (IKK2) and IKKgamma (or NF-kappaB Essential MOdulator, NEMO) and their substrate IkappaBalpha (Inhibitor of NF-kappaB), the corresponding cDNAs of these molecules were isolated, sequenced and characterized. A comparison of the amino acid sequences with those of their orthologues in other species showed a very high degree of identity, suggesting that the IKK complex and its substrate IkappaBalpha are evolutionarily highly conserved components of the NF-kappaB pathway. Bovine IKKalpha and IKKbeta are related protein kinases showing 50% identity which is especially prominent in the kinase and leucine zipper domains. Co-immunoprecipitation assays and GST-pull-down experiments were carried out to determine the composition of bovine IKK complexes compared to that in human Jurkat T cells. Using these approaches, the presence of bovine IKK complexes harbouring IKKalpha, IKKbeta, NEMO and the interaction of IKK with its substrate IkappaBalpha could be demonstrated. Parallel experiments using human Jurkat T cells confirmed the high degree of conservation also at the level of protein-protein interactions. Finally, a yeast two-hybrid analysis showed that bovine NEMO molecules, in addition to the binding to IKKalpha and IKKbeta, also strongly interact with each other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Keratinocyte apoptosis mediated by Fas/Fas ligand molecular interactions and subsequent caspase activation is believed to play an important role in the pathogenesis of atopic dermatitis (AD), in particular for the formation of spongiosis. To estimate epidermal caspase activation in normal and AD skin under in vivo conditions, we analysed caspase-3 cleavage by immunohistology. In normal skin as well as non-lesional AD skin, we detected caspase-3 cleavage in single cells of the basal layer. In contrast, in acute lesional AD skin, we not only obtained evidence for increased expression of cleaved caspase-3 in keratinocytes of the basal layer but also observed caspase-3 cleavage in one or more layers of the spinous cell layer, in particular in spongiotic areas. Short-term topical treatment of the skin lesions with tacrolimus or pimecrolimus abolished the expression of cleaved caspase-3 in the spinous layer. Moreover, epidermal caspase-3 cleavage correlated with the numbers of dermal interferon-gamma (IFN-gamma)-expressing CD4+ and CD8+ lymphocytes in skin lesions of AD patients, supporting the view that IFN-gamma is important for the activation of proapoptotic pathways in keratinocytes. This is also confirmed by the observation of increased Fas expression on keratinocytes in acute AD lesions that was markedly reduced following topical calcineurin inhibitor treatment. These data suggest that caspase-3 cleavage in the spinous layer of the epidermis is a pathologic event contributing to spongiosis formation in AD, whereas cleavage of caspase-3 in basal cells might represent a physiologic mechanism within the process of epidermal renewal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD40 and its ligand regulate pleiotropic biological responses, including cell proliferation, differentiation, and apoptosis. In many inflammatory lung diseases, tissue damage by environmental or endogenous oxidants plays a major role in disease pathogenesis. As the epithelial barrier is a major target for these oxidants, we postulated that CD40, the expression of which is increased in asthma, plays a role in the regulation of apoptosis of bronchial epithelial cells exposed to oxidants. Using 16HBE 14o- cells exposed to oxidant stress, we found that ligation of CD40 (induced by G28-5 monoclonal antibodies) enhanced cell survival and increased the number of cells in G2/M (interphase between DNA synthesis and mitosis) of the cell cycle. This was associated with NF-kappaB and activator protein-1 activation and increased expression of the inhibitor of apoptosis, c-IAP1. However, oxidant stress-induced apoptosis was found to be caspase- and calpain-independent implicating CD40 ligation as a regulator of caspase-independent cell death. This was confirmed by the demonstration that CD40 ligation prevented mitochondrial release and nuclear translocation of apoptosis inducing factor. In conclusion, we demonstrate a novel role for CD40 as a regulator of epithelial cell survival against oxidant stress. Furthermore, we have identified, for the first time, an endogenous inhibitory pathway of caspase-independent cell death.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: The induction of tumour cell death by apoptosis is a major goal of cancer therapy and the in situ detection of apoptosis in tumour tissue has become an important diagnostic parameter. Different apoptosis detection methods assess distinct biochemical processes in the dying cell. Thus, their direct comparison is mandatory to evaluate their diagnostic value. The aim of this study was to compare the immunohistochemical detection of active caspase 3 and single-stranded DNA in primary and metastatic liver tumours as markers of apoptotic cell death. METHODS: We studied detection of active caspase 3 and single-stranded DNA in 20 primary hepatocellular carcinomas (HCC) and 20 liver metastases from colorectal carcinomas (CRC) using immunohistochemistry on paraffin sections. RESULTS: Our results reveal that both methods are suitable and sensitive techniques for the in situ detection of apoptosis, however, they also demonstrate that immunohistochemistry for active caspase 3 and single-stranded DNA have differential sensitivities in HCC and CRC. CONCLUSION: The sensitivity of apoptosis detection using immunohistochemistry for active caspase 3 and single-stranded DNA may be tumour cell type dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Starches are the major source of dietary glucose in weaned children and adults. However, small intestine alpha-glucogenesis by starch digestion is poorly understood due to substrate structural and chemical complexity, as well as the multiplicity of participating enzymes. Our objective was dissection of luminal and mucosal alpha-glucosidase activities participating in digestion of the soluble starch product maltodextrin (MDx). PATIENTS AND METHODS: Immunoprecipitated assays were performed on biopsy specimens and isolated enterocytes with MDx substrate. RESULTS: Mucosal sucrase-isomaltase (SI) and maltase-glucoamylase (MGAM) contributed 85% of total in vitro alpha-glucogenesis. Recombinant human pancreatic alpha-amylase alone contributed <15% of in vitro alpha-glucogenesis; however, alpha-amylase strongly amplified the mucosal alpha-glucogenic activities by preprocessing of starch to short glucose oligomer substrates. At low glucose oligomer concentrations, MGAM was 10 times more active than SI, but at higher concentrations it experienced substrate inhibition whereas SI was not affected. The in vitro results indicated that MGAM activity is inhibited by alpha-amylase digested starch product "brake" and contributes only 20% of mucosal alpha-glucogenic activity. SI contributes most of the alpha-glucogenic activity at higher oligomer substrate concentrations. CONCLUSIONS: MGAM primes and SI activity sustains and constrains prandial alpha-glucogenesis from starch oligomers at approximately 5% of the uninhibited rate. This coupled mucosal mechanism may contribute to highly efficient glucogenesis from low-starch diets and play a role in meeting the high requirement for glucose during children's brain maturation. The brake could play a constraining role on rates of glucose production from higher-starch diets consumed by an older population at risk for degenerative metabolic disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the resolution of inflammatory responses, neutrophils rapidly undergo apoptosis. We describe a new proapoptotic pathway in which cathepsin D directly activates caspase-8. Cathepsin D is released from azurophilic granules in neutrophils in a caspase-independent but reactive oxygen species-dependent manner. Under inflammatory conditions, the translocation of cathepsin D in the cytosol is blocked. Pharmacological or genetic inhibition of cathepsin D resulted in delayed caspase activation and reduced neutrophil apoptosis. Cathepsin D deficiency or lack of its translocation in the cytosol prolongs innate immune responses in experimental bacterial infection and in septic shock. Thus, we identified a new function of azurophilic granules that is in addition to their role in bacterial defense mechanisms: to regulate the life span of neutrophils and, therefore, the duration of innate immune responses through the release of cathepsin D.