934 resultados para Cardiac function
Resumo:
OBJECTIVE To expand the limited information on the prognostic impact of quantitatively obtained collateral function in patients with coronary artery disease (CAD) and to estimate causality of such a relation. DESIGN Prospective cohort study with long-term observation of clinical outcome. SETTING University Hospital. PATIENTS One thousand one hundred and eighty-one patients with chronic stable CAD undergoing 1771 quantitative, coronary pressure-derived collateral flow index measurements, as obtained during a 1-min coronary balloon occlusion (CFI is the ratio between mean distal coronary occlusive pressure and mean aortic pressure both subtracted by central venous pressure). Subgroup of 152 patients included in randomised trials on the longitudinal effect of different arteriogenic protocols on CFI. INTERVENTIONS Collection of long-term follow-up information on clinical outcome. MAIN OUTCOME MEASURES All-cause mortality and major adverse cardiac events. RESULTS Cumulative 15-year survival rate was 48% in patients with CFI<0.25 and 65% in the group with CFI≥0.25 (p=0.0057). Cumulative 10-year survival rate was 75% in patients without arteriogenic therapy and 88% (p=0.0482) in the group with arteriogenic therapy and showing a significant increase in CFI at follow-up. By proportional hazard analysis, the following variables predicted increased all-cause mortality: age, low CFI, left ventricular end-diastolic pressure and number of vessels with CAD. CONCLUSIONS A well-functioning coronary collateral circulation independently predicts lowered mortality in patients with chronic CAD. This relation appears to be causal, because augmented collateral function by arteriogenic therapy is associated with prolonged survival.
Resumo:
Background: The pore-forming subunit of the cardiac sodium channel, Na v1.5, has been previously found to be mutated in genetically determined arrhythmias. Na v1.5 associates with many proteins that regulate its function and cellular localisation. In order to identify more in situ Na v1.5 interacting proteins, genetically-modified mice with a high-affinity epitope in the sequence of Na v1.5 can be generated. Methods: In this short study, we (1) compared the biophysical properties of the sodium current (I Na) generated by the mouse Na v1.5 (mNa v1.5) and human Na v1.5 (hNa v1.5) constructs that were expressed in HEK293 cells, and (2) investigated the possible alterations of the biophysical properties of the human Na v1.5 construct that was modified with specific epitopes. Results: The biophysical properties of mNa v1.5 were similar to the human homolog. Addition of epitopes either up-stream of the N-terminus of hNa v1.5 or in the extracellular loop between the S5 and S6 transmembrane segments of domain 1, significantly decreased the amount of I Na and slightly altered its biophysical properties. Adding green fluorescent protein (GFP) to the N-terminus did not modify any of the measured biophysical properties of hNa v1.5. Conclusions: These findings have to be taken into account when planning to generate genetically-modified mouse models that harbour specific epitopes in the gene encoding mNa v1.5.
Resumo:
Dilated cardiomyopathy is a serious and almost inevitable complication of Duchenne Muscular Dystrophy, a devastating and fatal disease of skeletal muscle resulting from the lack of functional dystrophin, a protein linking the cytoskeleton to the extracellular matrix. Ultimately, it leads to congestive heart failure and arrhythmias resulting from both cardiac muscle fibrosis and impaired function of the remaining cardiomyocytes. Here we summarize findings obtained in several laboratories, focusing on cellular mechanisms that result in degradation of cardiac functions in dystrophy. This article is part of a Special Issue entitled "Calcium Signaling in Heart".
Resumo:
In cardiac muscle, a number of posttranslational protein modifications can alter the function of the Ca(2+) release channel of the sarcoplasmic reticulum (SR), also known as the ryanodine receptor (RyR). During every heartbeat RyRs are activated by the Ca(2+)-induced Ca(2+) release mechanism and contribute a large fraction of the Ca(2+) required for contraction. Some of the posttranslational modifications of the RyR are known to affect its gating and Ca(2+) sensitivity. Presently, research in a number of laboratories is focused on RyR phosphorylation, both by PKA and CaMKII, or on RyR modifications caused by reactive oxygen and nitrogen species (ROS/RNS). Both classes of posttranslational modifications are thought to play important roles in the physiological regulation of channel activity, but are also known to provoke abnormal alterations during various diseases. Only recently it was realized that several types of posttranslational modifications are tightly connected and form synergistic (or antagonistic) feed-back loops resulting in additive and potentially detrimental downstream effects. This review summarizes recent findings on such posttranslational modifications, attempts to bridge molecular with cellular findings, and opens a perspective for future work trying to understand the ramifications of crosstalk in these multiple signaling pathways. Clarifying these complex interactions will be important in the development of novel therapeutic approaches, since this may form the foundation for the implementation of multi-pronged treatment regimes in the future. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Resumo:
In previous studies, we found that the improved contractile ability of cardiac myocytes from patients who have had left ventricular assist device (LVAD) support was due to a number of beneficial changes, most notably in calcium handling (increased sarcoplasmic reticulum calcium binding and uptake), improved integrity of cell membranes due to phospholipid reconstruction (reduced lysophospholipid content), and an upregulation of adrenoreceptors (increased adrenoreceptor numbers). However, in the case presented here, there was no increase in adrenoreceptor number, which is something that we usually find in core tissue at the time of LVAD removal or organ transplantation; also, there was no homogeneous postassist device receptor distribution. However, the patient was well maintained for 10 months following LVAD implantation, until a donor organ was available, regardless of the lack of adrenoreceptor improvement. We conclude from these studies that cardiac recovery is the result of the initiation of multiple repair mechanisms, and that the lack of expected changes, in this case increased adrenoreceptors, is not always an accurate indicator of anticipated outcome. We suggest that interventions and strategies have to consider multiple, beneficial changes due to unloading and target a number of biochemical and structural areas to produce improvement, even if not all of these improvements occur.
Resumo:
Thin filament regulation of muscle contraction is a calcium dependent process mediated by the Tn complex. Calcium is released into the sarcomere and is bound by TnC. The subsequent conformation change in TnC is thought to begin a cascade of events that result in the activation of the actin-myosin ATPase. While the general events of this cascade are known, the molecular mechanisms of this signal transduction event are not. Recombinant DNA techniques, physiological and biochemical studies have been used to localize and characterize the structural domains of TnC that play a role in the calcium dependent signal transduction event that serves to trigger muscle contraction. The strategy exploited the observed functional differences between the isoforms of TnC to map regions of functional significance to the proteins. Chimeric cardiac-skeletal TnC proteins were generated to localize the domains of TnC that are required for maximal function in the myofibrilar ATPase assay. Characterization of these regions has yielded information concerning the molecular mechanism of muscle contraction. ^
Resumo:
$\rm Ca\sp{2+}$-dependent exposure of an N-terminal hydrophobic region in troponin C (TnC) is thought to be important for the regulation of contraction in striated muscle. To study these conformational changes in cardiac troponin (cTnC), the $\varepsilon$C and $\varepsilon$H chemical shifts for all 10 Met residues in cTnC were sequence-specific assigned on NMR spectra using a combination of two dimensional NMR techniques and site-directed mutagenesis. The assigned methyl-Met chemical shifts were used as structural markers to monitor conformational changes induced by $\rm Ca\sp{2+}.$ The results showed that binding of $\rm Ca\sp{2+}$ to the regulatory site in the N-domain induced large changes in the $\varepsilon$H and $\varepsilon$C chemical shifts of Met 45, Met 80, Met 81 in the predicted N-terminal hydrophobic region, but had no effect on the chemical shifts of Met residues located in the C-domain. These results suggest that the $\rm Ca\sp{2+}$-dependent functions of cTnC are mainly through N-terminal domain of cTnC.^ To further define the molecular mechanism by which TnC regulates muscle contraction, single Cys residues were engineered at positions 45, 81, 84 or 85 in the N-terminal hydrophobic region of cTnC to provide sites for attachment of specific blocking groups. Blocking groups were coupled to these Cys residues in cTnC mutants and the covalent adducts were tested for activity in TnC-extracted myofibrils. Covalent modification of cTnC(C45) had no effect on maximal myofibril ATPase activity. Greatly decreased myofibril ATPase activity resulted when the peptide or biotin was conjugated to residue 81 in cTnC(C81), while less inhibition resulted from covalent modification of cTnC(C84) or cTnC(C85). The results suggest that limited sites of the N-terminal hydrophobic region in cTnC are important for transducing the $\rm Ca\sp{2+}$ signal to troponin I (TnI) and are sensitive to modification, while other regions are less important or can adapt to steric hindrances introduced by bulky blocking groups.^ Although the exposed TnI interaction site in the N-terminal hydrophobic region of TnC is crucial for function of TnC, other regions in the N-domain of TnC may also participate in transducing the $\rm Ca\sp{2+}$ signal and conferring the maximal activation of actomyosin ATPase. The interactions between the B-/C-helices of cTnC and cTnI were characterized using a combination of site-directed mutagenesis, fluorescence and covalent modification. The results suggest that the $\rm Ca\sp{2+}$-dependent interactions of the B-/C-helices of cTnC with TnI may be required for the maximal activation of muscle contraction. ^
Resumo:
OBJECTIVE To assess long-term clinical outcomes of consecutive high-risk patients with severe aortic stenosis according to treatment allocation to transcatheter aortic valve implantation (TAVI), surgical aortic valve replacement (SAVR) or medical treatment (MT). METHODS Patients with severe aortic stenosis were consecutively enrolled into a prospective single centre registry. RESULTS Among 442 patients (median age 83 years, median STS-score 4.7) allocated to MT (n=78), SAVR (n=107), or TAVI (n=257) all-cause mortality amounted to 81%, 37% and 43% after a median duration of follow-up of 3.9 years (p<0.001). Rates of major adverse cerebro-cardiovascular events were lower in patients undergoing SAVR or TAVI as compared with MT (SAVR vs MT: HR 0.31, 95% CI 0.21 to 0.46) (TAVI vs MT: HR 0.34, 95% CI 0.25 to 0.46), with no significant difference between SAVR and TAVI (HR 0.88, 95% CI 0.62 to 1.25). Whereas SAVR (HR 0.39, 95% CI 0.24 to 0.61), TAVI (HR 0.37, 95% CI 0.26 to 0.52), and female gender (HR 0.72, 95% CI 0.53 to 0.99) were associated with improved survival, body mass index ≤20 kg/m(2) (HR 1.60, 95% CI 1.04 to 2.47), diabetes (HR 1.48, 95% CI 1.03 to 2.12), peripheral vascular disease (HR 2.01, 95% CI 1.44 to 2.81), atrial fibrillation (HR 1.74, 95% CI 1.28 to 2.37) and pulmonary hypertension (HR 1.43, 95% CI 1.03 to 2.00) were identified as independent predictors of mortality. CONCLUSIONS Among high-risk patients with severe aortic stenosis, long-term clinical outcome through 5 years was comparable between patients allocated to SAVR or TAVI. In contrast, patients with MT had a dismal prognosis.
Resumo:
OBJECTIVE To determine the prognostic accuracy of cardiac biomarkers alone and in combination with clinical scores in elderly patients with non-high-risk pulmonary embolism (PE). DESIGN Ancillary analysis of a Swiss multicentre prospective cohort study. SUBJECTS A total of 230 patients aged ≥65 years with non-high-risk PE. MAIN OUTCOME MEASURES The study end-point was a composite of PE-related complications, defined as PE-related death, recurrent venous thromboembolism or major bleeding during a follow-up of 30 days. The prognostic accuracy of the Pulmonary Embolism Severity Index (PESI), the Geneva Prognostic Score (GPS), the precursor of brain natriuretic peptide (NT-proBNP) and high-sensitivity cardiac troponin T (hs-cTnT) was determined using sensitivity, specificity, predictive values, receiver operating characteristic (ROC) curve analysis, logistic regression and reclassification statistics. RESULTS The overall complication rate during follow-up was 8.7%. hs-cTnT achieved the highest prognostic accuracy [area under the ROC curve: 0.75, 95% confidence interval (CI): 0.63-0.86, P < 0.001). At the predefined cut-off values, the negative predictive values of the biomarkers were above 95%. For levels above the cut-off, the risk of complications increased fivefold for hs-cTnT [odds ratio (OR): 5.22, 95% CI: 1.49-18.25] and 14-fold for NT-proBNP (OR: 14.21, 95% CI: 1.73-116.93) after adjustment for both clinical scores and renal function. Reclassification statistics indicated that adding hs-cTnT to the GPS or the PESI significantly improved the prognostic accuracy of both clinical scores. CONCLUSION In elderly patients with nonmassive PE, NT-proBNP or hs-cTnT could be an adequate alternative to clinical scores for identifying low-risk individuals suitable for outpatient management.
Resumo:
Background Different anesthesia regimes are commonly used in experimental models of cardiac arrest, but the effects of various anesthetics on clinical outcome parameters are unknown. We conducted a study in which we subjected rats to cardiac arrest under medetomidine/ketamine or sevoflurane/fentanyl anesthesia. Methods Asystolic cardiac arrest for 8 minutes was induced in 73 rats with a mixture of potassium chloride and esmolol. Daily behavioral and neurological examination included the open field test (OFT), the tape removal test (TRT) and a neurodeficit score (NDS). Animals were randomized for sacrifice on day 2 or day 5 and brains were harvested for histology in the hippocampus cornus ammonis segment CA1. The inflammatory markers IL-6, TNF-α, MCP-1 and MIP-1α were assessed in cerebrospinal fluid (CSF). Proportions of survival were tested with the Fisher’s exact test, repeated measurements were assessed with the Friedman’s test; the baseline values were tested using Mann–Whitney U test and the difference of results of repeated measures were compared. Results In 31 animals that survived beyond 24 hours neither OFT, TRT nor NDS differed between the groups; histology was similar on day 2. On day 5, significantly more apoptosis in the CA1 segment of the hippocampus was found in the sevoflurane/fentanyl group. MCP-1 was higher on day 5 in the sevoflurane/fentanyl group (p = 0.04). All other cyto- and chemokines were below detection threshold. Conclusion In our cardiac arrest model neurological function was not influenced by different anesthetic regimes; in contrast, anesthesia with sevoflurane/fentanyl results in increased CSF inflammation and histologic damage at day 5 post cardiac arrest.
Resumo:
BACKGROUND Antifibrinolytics have been used for 2 decades to reduce bleeding in cardiac surgery. MDCO-2010 is a novel, synthetic, serine protease inhibitor. We describe the first experience with this drug in patients. METHODS In this phase II, double-blind, placebo-controlled study, 32 patients undergoing isolated primary coronary artery bypass grafting with cardiopulmonary bypass were randomly assigned to 1 of 5 increasing dosage groups of MDCO-2010. The primary aim was to evaluate pharmacokinetics (PK) with assessment of plasmatic concentrations of the drug, short-term safety, and tolerance of MDCO-2010. Secondary end points were influence on coagulation, chest tube drainage, and transfusion requirements. RESULTS PK analysis showed linear dosage-proportional correlation between MDCO-2010 infusion rate and PK parameters. Blood loss was significantly reduced in the 3 highest dosage groups compared with control (P = 0.002, 0.004 and 0.011, respectively). The incidence of allogeneic blood product transfusions was lower with MDCO-2010 4/24 (17%) vs 4/8 (50%) in the control group. MDCO-2010 exhibited dosage-dependent antifibrinolytic effects through suppression of D-dimer generation and inhibition of tissue plasminogen activator-induced lysis in ROTEM analysis as well as anticoagulant effects demonstrated by prolongation of activated clotting time and activated partial thromboplastin time. No systematic differences in markers of end organ function were observed among treatment groups. Three patients in the MDCO-2010 groups experienced serious adverse events. One patient experienced intraoperative thrombosis of venous grafts considered possibly related to the study drug. No reexploration for mediastinal bleeding was required, and there were no deaths. CONCLUSIONS This first-in-patient study demonstrated dosage-proportional PK for MDCO-2010 and reduction of chest tube drainage and transfusions in patients undergoing primary coronary artery bypass grafting. Antifibrinolytic and anticoagulant effects were demonstrated using various markers of coagulation. MDCO-2010 was well tolerated and showed an acceptable initial safety profile. Larger multi-institutional studies are warranted to further investigate the safety and efficacy of this compound.
Resumo:
Sudden death (SD) is a tragic event and a world-wide health problem. Every year, near 4-5 million people experience SD. SD is defined as the death occurred in 1h after the onset of symptoms in a person without previous signs of fatality. It can be named "recovered SD" when the case received medical attention, cardiac reanimation effective defibrillation or both, surviving the fatal arrhythmia. Cardiac channelopathies are a group of diseases characterized by abnormal ion channel function due to genetic mutations in ion channel genes, providing increased susceptibility to develop cardiac arrhythmias and SD. Usually the death occurs before 40 years of age and in the autopsy the heart is normal. In this review we discuss the main cardiac channelopathies involved in sudden cardiac death along with current management of cases and family members that have experienced such tragic event.
Resumo:
BACKGROUND Membrane-associated guanylate kinase (MAGUK) proteins are important determinants of ion channel organization in the plasma membrane. In the heart, the MAGUK protein SAP97, encoded by the DLG1 gene, interacts with several ion channels via their PDZ domain-binding motif and regulates their function and localization. OBJECTIVE The purpose of this study was to assess in vivo the role of SAP97 in the heart by generating a genetically modified mouse model in which SAP97 is suppressed exclusively in cardiomyocytes. METHODS SAP97(fl/fl) mice were generated by inserting loxP sequences flanking exons 1-3 of the SAP97 gene. SAP97(fl/fl) mice were crossed with αMHC-Cre mice to generate αMHC-Cre/SAP97(fl/fl) mice, thus resulting in a cardiomyocyte-specific deletion of SAP97. Quantitative reverse transcriptase-polymerase chain reaction, western blots, and immunostaining were performed to measure mRNA and protein expression levels, and ion channel localization. The patch-clamp technique was used to record ion currents and action potentials. Echocardiography and surface ECGs were performed on anesthetized mice. RESULTS Action potential duration was greatly prolonged in αMHC-Cre/SAP97(fl/fl) cardiomyocytes compared to SAP97(fl/fl) controls, but maximal upstroke velocity was unchanged. This was consistent with the decreases observed in IK1, Ito, and IKur potassium currents and the absence of effect on the sodium current INa. Surface ECG revealed an increased corrected QT interval in αMHC-Cre/SAP97(fl/fl) mice. CONCLUSION These data suggest that ablation of SAP97 in the mouse heart mainly alters potassium channel function. Based on the important role of SAP97 in regulating the QT interval, DLG1 may be a susceptibility gene to be investigated in patients with congenital long QT syndrome.
Resumo:
BACKGROUND Sodium channel NaV1.5 underlies cardiac excitability and conduction. The last 3 residues of NaV1.5 (Ser-Ile-Val) constitute a PDZ domain-binding motif that interacts with PDZ proteins such as syntrophins and SAP97 at different locations within the cardiomyocyte, thus defining distinct pools of NaV1.5 multiprotein complexes. Here, we explored the in vivo and clinical impact of this motif through characterization of mutant mice and genetic screening of patients. METHODS AND RESULTS To investigate in vivo the regulatory role of this motif, we generated knock-in mice lacking the SIV domain (ΔSIV). ΔSIV mice displayed reduced NaV1.5 expression and sodium current (INa), specifically at the lateral myocyte membrane, whereas NaV1.5 expression and INa at the intercalated disks were unaffected. Optical mapping of ΔSIV hearts revealed that ventricular conduction velocity was preferentially decreased in the transversal direction to myocardial fiber orientation, leading to increased anisotropy of ventricular conduction. Internalization of wild-type and ΔSIV channels was unchanged in HEK293 cells. However, the proteasome inhibitor MG132 rescued ΔSIV INa, suggesting that the SIV motif is important for regulation of NaV1.5 degradation. A missense mutation within the SIV motif (p.V2016M) was identified in a patient with Brugada syndrome. The mutation decreased NaV1.5 cell surface expression and INa when expressed in HEK293 cells. CONCLUSIONS Our results demonstrate the in vivo significance of the PDZ domain-binding motif in the correct expression of NaV1.5 at the lateral cardiomyocyte membrane and underline the functional role of lateral NaV1.5 in ventricular conduction. Furthermore, we reveal a clinical relevance of the SIV motif in cardiac disease.
Resumo:
OBJECTIVES: Extensive endurance training and arterial hypertension are established risk factors for atrial fibrillation. We aimed to assess the proportion of masked hypertension in endurance athletes and the impact on cardiac remodeling, mechanics, and supraventricular tachycardias (SVT). METHODS: Male participants of a 10-mile race were recruited and included if office blood pressure was normal (<140/90 mmHg). Athletes were stratified into a masked hypertension and normotension group by ambulatory blood pressure. Primary endpoint was diastolic function, expressed as peak early diastolic mitral annulus velocity (E'). Left ventricular global strain, left ventricular mass/volume ratio, left atrial volume index, signal-averaged P-wave duration (SAPWD), and SVT during 24-h Holter monitoring were recorded. RESULTS: From 108 runners recruited, 87 were included in the final analysis. Thirty-three (38%) had masked hypertension. The mean age was 42 +/- 8 years. Groups did not differ with respect to age, body composition, cumulative training hours, and 10-mile race time. Athletes with masked hypertension had a lower E' and a higher left ventricular mass/volume ratio. Left ventricular global strain, left atrial volume index, SAPWD, and SVT showed no significant differences between the groups. In multiple linear regression analysis, masked hypertension was independently associated with E' (beta = -0.270, P = 0.004) and left ventricular mass/volume ratio (beta = 0.206, P = 0.049). Cumulative training hours was the only independent predictor for left atrial volume index (beta = 0.474, P < 0.001) and SAPWD (beta = 0.481, P < 0.001). CONCLUSION: In our study, a relevant proportion of middle-aged athletes had masked hypertension, associated with a lower diastolic function and a higher left ventricular mass/volume ratio, but unrelated to left ventricular systolic function, atrial remodeling, or SVT.