954 resultados para Carbon density


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative stress induces neuronal apoptosis and is implicated in cerebral ischemia, head trauma, and age-related neurodegenerative diseases. An early step in this process is the loss of intracellular K(+) via K(+) channels, and evidence indicates that K(v)2.1 is of particular importance in this regard, being rapidly inserted into the plasma membrane in response to apoptotic stimuli. An additional feature of neuronal oxidative stress is the up-regulation of the inducible enzyme heme oxygenase-1 (HO-1), which catabolizes heme to generate biliverdin, Fe(2+), and carbon monoxide (CO). CO provides neuronal protection against stresses such as stroke and excitotoxicity, although the underlying mechanisms are not yet elucidated. Here, we demonstrate that CO reversibly inhibits K(v)2.1. Channel inhibition by CO involves reactive oxygen species and protein kinase G activity. Overexpression of K(v)2.1 in HEK293 cells increases their vulnerability to oxidant-induced apoptosis, and this is reversed by CO. In hippocampal neurons, CO selectively inhibits K(v)2.1, reverses the dramatic oxidant-induced increase in K(+) current density, and provides marked protection against oxidant-induced apoptosis. Our results provide a novel mechanism to account for the neuroprotective effects of CO against oxidative apoptosis, which has potential for therapeutic exploitation to provide neuronal protection in situations of oxidative stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Suburban areas continue to grow rapidly and are potentially an important land-use category for anthropogenic carbon-dioxide (CO2) emissions. Here eddy covariance techniques are used to obtain ecosystem-scale measurements of CO2 fluxes (FC) from a suburban area of Baltimore, Maryland, USA (2002–2006). These are among the first multi-year measurements of FC in a suburban area. The study area is characterized by low population density (1500 inhabitants km−2) and abundant vegetation (67.4% vegetation land-cover). FC is correlated with photosynthetic active radiation (PAR), soil temperature, and wind direction. Missing hourly FC is gap-filled using empirical relations between FC, PAR, and soil temperature. Diurnal patterns show net CO2 emissions to the atmosphere during winter and net CO2 uptake by the surface during summer daytime hours (summer daily total is −1.25 g C m−2 d−1). Despite the large amount of vegetation the suburban area is a net CO2 source of 361 g C m−2 y−1 on average.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose The sensitivity of soil organic carbon to global change drivers, according to the depth profile, is receiving increasing attention because of its importance in the global carbon cycle and its potential feedback to climate change. A better knowledge of the vertical distribution of SOC and its controlling factors—the aim of this study—will help scientists predict the consequences of global change. Materials and methods The study area was the Murcia Province (S.E. Spain) under semiarid Mediterranean conditions. The database used consists of 312 soil profiles collected in a systematic grid, each 12 km2 covering a total area of 11,004 km2. Statistical analysis to study the relationships between SOC concentration and control factors in different soil use scenarios was conducted at fixed depths of 0–20, 20–40, 40–60, and 60–100 cm. Results and discussion SOC concentration in the top 40 cm ranged between 6.1 and 31.5 g kg−1, with significant differences according to land use, soil type and lithology, while below this depth, no differences were observed (SOC concentration 2.1–6.8 g kg−1). The ANOVA showed that land use was the most important factor controlling SOC concentration in the 0–40 cm depth. Significant differences were found in the relative importance of environmental and textural factors according to land use and soil depth. In forestland, mean annual precipitation and texture were the main predictors of SOC, while in cropland and shrubland, the main predictors were mean annual temperature and lithology. Total SOC stored in the top 1 m in the region was about 79 Tg with a low mean density of 7.18 kg Cm−3. The vertical distribution of SOC was shallower in forestland and deeper in cropland. A reduction in rainfall would lead to SOC decrease in forestland and shrubland, and an increase of mean annual temperature would adversely affect SOC in croplands and shrubland. With increasing depth, the relative importance of climatic factors decreases and texture becomes more important in controlling SOC in all land uses. Conclusions Due to climate change, impacts will be much greater in surface SOC, the strategies for C sequestration should be focused on subsoil sequestration, which was hindered in forestland due to bedrock limitations to soil depth. In these conditions, sequestration in cropland through appropriate management practices is recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate projections show Australia becoming significantly warmer during the 21st century, and precipitation decreasing over much of the continent. Such changes are conventionally considered to increase wildfire risk. Nevertheless, we show that burnt area increases in southern Australia, but decreases in northern Australia. Overall the projected increase in fire is small (0.72–1.31% of land area, depending on the climate scenario used), and does not cause a decrease in carbon storage. In fact, carbon storage increases by 3.7–5.6 Pg C (depending on the climate scenario used). Using a process-based model of vegetation dynamics, vegetation–fire interactions and carbon cycling, we show increased fire promotes a shift to more fire-adapted trees in wooded areas and their encroachment into grasslands, with an overall increase in forested area of 3.9–11.9%. Both changes increase carbon uptake and storage. The increase in woody vegetation increases the amount of coarse litter, which decays more slowly than fine litter hence leading to a relative reduction in overall heterotrophic respiration, further reducing carbon losses. Direct CO2 effects increase woody cover, water-use efficiency and productivity, such that carbon storage is increased by 8.5–14.8 Pg C compared to simulations in which CO2 is held constant at modern values. CO2 effects tend to increase burnt area, fire fluxes and therefore carbon losses in arid areas, but increase vegetation density and reduce burnt area in wooded areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Countless cities are rapidly developing across the globe, pressing the need for clear urban planning and design recommendations geared towards sustainability. This article examines the intersections of Jane Jacobs’ four conditions for diversity with low-carbon and low-energy use urban systems in four cities around the world: Lyon (France), Chicago (United-States), Kolkata (India), and Singapore (Singapore). After reviewing Jacobs’ four conditions for diversity, we introduce the four cities and describe their historical development context. We then present a framework to study the cities along three dimensions: population and density, infrastructure development/use, and climate and landscape. These cities differ in many respects and their analysis is instructive for many other cities around the globe. Jacobs’ conditions are present in all of them, manifested in different ways and to varying degrees. Overall we find that the adoption of Jacobs' conditions seems to align well with concepts of low-carbon urban systems, with their focus on walkability, transit-oriented design, and more efficient land use (i.e., smaller unit sizes). Transportation sector emissions seems to demonstrate a stronger influence from the presence of Jacobs' conditions, while the link was less pronounced in the building sector. Kolkata, a low-income, developing world city, seems to possess many of Jacobs' conditions, while exhibiting low per capita emissions - maintaining both of these during its economic expansion will take careful consideration. Greenhouse gas mitigation, however, is inherently an in situ problem and the first task must therefore be to gain local knowledge of an area before developing strategies to lower its carbon footprint.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of managing land to optimise carbon sequestration for climate change mitigation is widely recognised, with grasslands being identified as having the potential to sequester additional carbon. However, most soil carbon inventories only consider surface soils, and most large scale surveys group ecosystems into broad habitats without considering management intensity. Consequently, little is known about the quantity of deep soil carbon and its sensitivity to management. From a nationwide survey of grassland soils to 1 m depth, we show that carbon in grasslands soils is vulnerable to management and that these management effects can be detected to considerable depth down the soil profile, albeit at decreasing significance with depth. Carbon concentrations in soil decreased as management intensity increased, but greatest soil carbon stocks (accounting for bulk density differences), were at intermediate levels of management. Our study also highlights the considerable amounts of carbon in sub-surface soil below 30cm, which is missed by standard carbon inventories. We estimate grassland soil carbon in Great Britain to be 2097 Tg C to a depth of 1 m, with ~60% of this carbon being below 30cm. Total stocks of soil carbon (t ha-1) to 1 m depth were 10.7% greater at intermediate relative to intensive management, which equates to 10.1 t ha-1 in surface soils (0-30 cm), and 13.7 t ha-1 in soils from 30-100 cm depth. Our findings highlight the existence of substantial carbon stocks at depth in grassland soils that are sensitive to management. This is of high relevance globally, given the extent of land cover and large stocks of carbon held in temperate managed grasslands. Our findings have implications for the future management of grasslands for carbon storage and climate mitigation, and for global carbon models which do not currently account for changes in soil carbon to depth with management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ab initio simulations of carbon nanotubes interacting with ascorbic acid and nicotinamide are reported. The electronic transport properties of these systems are studied using a combination of density functional theory and non-equilibrium Green`s functions methods. The adsorptions of both molecules are observed to depend strongly on their functionalization. The interaction through the appropriate functionalized species modifies the structural and electronic properties of the original system, resulting in a chemisorption regime. Changes in the electronic transport properties are also observed, with reductions on the total electronic transmission probabilities. Nevertheless, when the molecules interact through the pristine form, a physisorption interaction is observed with insignificant structural and electronic transport changes. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon nanotubes rank amongst potential candidates for a new family of nanoscopic devices, in particular for sensing applications. At the same time that defects in carbon nanotubes act as binding sites for foreign species, our current level of control over the fabrication process does not allow one to specifically choose where these binding sites will actually be positioned. In this work we present a theoretical framework for accurately calculating the electronic and transport properties of long disordered carbon nanotubes containing a large number of binding sites randomly distributed along a sample. This method combines the accuracy and functionality of ab initio density functional theory to determine the electronic structure with a recursive Green`s functions method. We apply this methodology on the problem of nitrogen-rich carbon nanotubes, first considering different types of defects and then demonstrating how our simulations can help in the field of sensor design by allowing one to compute the transport properties of realistic nanotube devices containing a large number of randomly distributed binding sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we employ the state-of-the-art pseudopotential method, within a generalized gradient approximation to the density functional theory, combined with a recently developed method for the calculation of HREELS spectra to study a series of different proposed models for carbon incorporation on the silicon (001) surface. A fully discussion on the geometry, energetics and specially the comparison between experimental and theoretical STM images and electron energy loss spectra indicate that the Si(100)-c(4 x 4) is probably induced by Si-C surface dinners, in agreement with recent experimental findings. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-frequency noise in an electrolyte-insulator- semiconductor (EIS) structure functionalized with multilayers of polyamidoamine (PAMAM) dendrimer and single-walled carbon nanotubes (SWNT) is studied. The noise spectral density exhibits 1/f(gamma) dependence with the power factor of gamma approximate to 0.8 and gamma = 0.8-1.8 for the bare and functionalized EIS sensor, respectively. The gate-voltage noise spectral density is practically independent of the pH value of the solution and increases with increasing gate voltage or gate-leakage current. It has been revealed that functionalization of an EIS structure with a PAMAM/SWNTs multilayer leads to an essential reduction of the 1/f noise. To interpret the noise behavior in bare and functionalized EIS devices, a gate-current noise model for capacitive EIS structures based on an equivalent flatband-voltage fluctuation concept has been developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new family of compounds is presented as potential carbon monoxide releasing molecules (CORMs). These compounds, based on tetrachlorocarbonyliridate(III) derivatives, were synthesized and fully characterized by X-ray diffraction, electrospray mass spectrometry, IR. NMR, and density functional theory calculations. The rate of CO release was studied via the myoglobin assay. The results showed that the rate depends on the nature of the sixth ligand, trans to CO, and that a significant modulation on the release rate can be produced by changing the ligand. The reported compounds are soluble in aqueous media, and the rates of CO release are comparable with those for known CORMs, releasing CO at a rate of 0.03-0.58 mu M min(-1) in a 10 mu M solution of myoglobin and 10 mu M of the complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the covalent functionalization of single-wall carbon nanotubes (SWNTs) with phenosafranine (PS) and Nile Blue (NB) dyes. These dyes can act as photosensitizers in energy and electron transfer reactions, with a potential to be applied in photodynamic therapy. Several changes in the characteristic Raman vibrational features of the dyes suggest that a covalent modification of the nanotubes with the organic dyes occurs. Specifically, the vibrational modes assigned to the NH(2) moieties of the dyes are seen to disappear in the SWNT-dye nanocomposites, corroborating the bond formation between amine groups in the dyes and carboxyl groups in the oxidized nanotubes. The X-ray absorption (XANES) data also show, that the intense band at 398.6 eV attributed to 1s -> 2p pi* transition of the nitrogen of the aromatic PS ring, is shifted due to the bonding with the carbonic structure of the SWNTs. The cytotoxicity data of dyes-modified SWNT composites in the presence and absence of light shows that the SWNT-NB (4 mu g/mL) composite presents a good photodynamic effect, namely a low toxicity in the dark, higher toxicity in the presence of light and also a reduced dye photobleaching by auto-oxidation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-density polyethylene was filled with cellulose fibres from sugar cane bagasse obtained from organosolv/supercritical carbon dioxide pulping process. The fibres were also used after chemical modification with octadecanoyl and dodecanoyl chloride acids. The morphology, thermal properties, mechanical properties in both the linear and nonlinear range, and the water absorption behaviour of ensuing composites were tested. The evidence of occurrence of the chemical modification was checked by X-ray photoelectron spectrometry. The degree of polymerisation of the fibres and their intrinsic properties (zero tensile strength) were determined. It clearly appeared that the surface chemical modification of cellulose fibres resulted in improved interfacial adhesion with the matrix and higher dispersion level. However, composites did not show improved mechanical performances when compared to unmodified fibres. This surprising result was ascribed to the strong lowering of the degree of polymerisation of cellulose fibres (as confirmed by the drastic decrease of their zero tensile strength) after chemical treatment despite the mild conditions used. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We employed the Density Functional Theory along with small basis sets, B3LYP/LANL2DZ, for the study of FeTIM complexes with different pairs of axial ligands (CO, H(2)O, NH(3), imidazole and CH(3)CN). These calculations did not result in relevant changes of molecular quantities as bond lengths, vibrational frequencies and electronic populations supporting any significant back-donation to the carbonyl or acetonitrile axial ligands. Moreover, a back-donation mechanism to the macrocycle cannot be used to explain the observed changes in molecular properties along these complexes with CO or CH(3)CN. This work also indicates that complexes with CO show smaller binding energies and are less stable than complexes with CH(3)CN. Further, the electronic band with the largest intensity in the visible region (or close to this region) is associated to the transition from an occupied 3d orbital on iron to an empty pi* orbital located at the macrocycle. The energy of this Metal-to-Ligand Charge Transfer (MLCT) transition shows a linear relation to the total charge of the macrocycle in these complexes as given by Mulliken or Natural Population Analysis (NPA) formalisms. Finally, the macrocycle total charge seems to be influenced by the field induced by the axial ligands. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new family of compounds is presented as potential carbon monoxide releasing molecules (CORMs). These compounds, based on tetrachlorocarbonyliridate(III) derivatives, were synthesized and fully characterized by X-ray diffraction, electrospray mass spectrometry, IR. NMR, and density functional theory calculations. The rate of CO release was studied via the myoglobin assay. The results showed that the rate depends on the nature of the sixth ligand, trans to CO, and that a significant modulation on the release rate can be produced by changing the ligand. The reported compounds are soluble in aqueous media, and the rates of CO release are comparable with those for known CORMs, releasing CO at a rate of 0.03-0.58 mu M min(-1) in a 10 mu M solution of myoglobin and 10 mu M of the complexes.